ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagram and optical conductivity of La1.8-xEu0.2SrxCuO4

291   0   0.0 ( 0 )
 نشر من قبل Marta Autore
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

La1.8-xEu0.2SrxCuO4 (LESCO) is the member of the 214 family which exhibits the largest intervals among the structural, charge ordering (CO), magnetic, and superconducting transition temperatures. By using new dc transport measurements and data in the literature we construct the phase diagram of LESCO between x = 0.8 and 0.20. This phase diagram has been further probed in ac, by measuring the optical conductivity {sigma}1({omega}) of three single crystals with x = 0.11, 0.125, and 0.16 between 10 and 300 K in order to associate the extra-Drude peaks often observed in the 214 family with a given phase. The far-infrared peak we detect in underdoped LESCO is the hardest among them, survives up to room temperature and is associated with charge localization rather than with ordering. At the CO transition for the commensurate doping x = 0.125 instead the extra-Drude peak hardens and a pseudogap opens in {sigma}1({omega}), approximately as wide as the maximum superconducting gap of LSCO.



قيم البحث

اقرأ أيضاً

We have measured the resistivity, optical conductivity, and magnetic susceptibility of LaSb$_2$ to search for clues as to the cause of the extraordinarily large linear magnetoresistance and to explore the properties of the superconducting state. We f ind no evidence in the optical conductivity for the formation of a charge density wave state above 20 K despite the highly layered crystal structure. In addition, only small changes to the optical reflectivity with magnetic field are observed indicating that the MR is due to scattering rate, not charge density, variations with field. Although a superconducting ground state was previously reported below a critical temperature of 0.4 K, we observe, at ambient pressure, a fragile superconducting transition with an onset at 2.5 K. In crystalline samples, we find a high degree of variability with a minority of samples displaying a full Meissner fraction below 0.2 K and fluctuations apparent up to 2.5 K. The application of pressure stabilizes the superconducting transition and reduces the anisotropy of the superconducting phase.
We have measured temperature and magnetic field dependences of the thermal conductivity along the c-axis, kc, and that along the [110] direction, k110, of CuB2O4 single crystals in zero field and magnetic fields along the c-axis and along the [110] d irection. It has been found that the thermal conductivity is nearly isotropic and very large in zero field and that the thermal conductivity due to phonons is dominant in CuB2O4. The temperature and field dependences of kc and k110 have markedly changed at phase boundaries in the magnetic phase diagram, which has been understood to be due to the change of the mean free path of phonons caused by the change of the phonon-spin scattering rate at the phase boundaries. It has been concluded that thermal conductivity measurements are very effective for detecting magnetic phase boundaries.
156 - V. A. Sidorov , Xin Lu , T. Park 2013
We report the temperature-pressure (T-P) phase diagram of CePt2In7 single crystals, especially the pressure evolution of the antiferromagnetic order and the emergence of superconductivity, which have been studied by electrical resistivity and ac calo rimetry under nearly hydrostatic environments. Compared with its polycrystalline counterpart, bulk superconductivity coexists with antiferromagnetism in a much narrower pressure region. The possible existence of textured superconductivity and local quantum criticality also are observed in CePt2In7, exhibiting a remarkable similarity with CeRhIn5.
146 - E. Hassinger , D. Aoki , G. Knebel 2009
UCoGe is one of the few compounds showing the coexistence of ferromagnetism and superconductivity at ambient pressure. With T_Curie = 3 K and T_SC = 0.6 K it is near a quantum phase transition; the pressure needed to suppress the magnetism is slightl y higher than 1 GPa. We report simultaneous resistivity and ac-susceptibility measurements under pressure on a polycrystal with very large single-crystalline domains and a resistivity ratio of about 6. Both methods confirm the phase diagram established before by resistivity measurements on a polycrystal. The ferromagnetic phase is suppressed for P approximately 1.2 GPa. Astonishingly, the superconductivity persists at pressures up to at least 2.4 GPa. In other superconducting and ferromagnetic heavy fermion compounds like UGe2 and URhGe, the superconducting state is situated only inside the larger ferromagnetic region. Therefore, UCoGe seems to be the first example where superconductivity extends from the ferromagnetic to the paramagnetic region.
NdFeAsO0.88F0.12 belongs to the recently discovered family of high-TC iron-based superconductors. The influence of high pressure on transport properties of this material has been studied. Contrary to La-based compounds, we did not observe a maximum i n TC under pressure. Under compression, TC drops rapidly as a linear function of pressure with the slope k = -2.8 pm 0.1 K / GPa. The extrapolated value of TC at zero pressure is about TC (0) = 51.7 pm 0.4 K. At pressures higher than ~18.4 GPa, the superconducting state disappears at all measured temperatures. The resistance changes slope and shows a turn-up behavior, which may be related to the Kondo effect or a weak localization of two-dimensional carriers below ~45 K that is above TC and thus competing with the superconducting phase. The behavior of the sample is completely reversible at the decompression. On the bases of our experimental data, we propose a tentative P-T phase diagram of NdFeAsO0.88F0.12.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا