ﻻ يوجد ملخص باللغة العربية
The simplicial condition and other stronger conditions that imply it have recently played a central role in developing polynomial time algorithms with provable asymptotic consistency and sample complexity guarantees for topic estimation in separable topic models. Of these algorithms, those that rely solely on the simplicial condition are impractical while the practical ones need stronger conditions. In this paper, we demonstrate, for the first time, that the simplicial condition is a fundamental, algorithm-independent, information-theoretic necessary condition for consistent separable topic estimation. Furthermore, under solely the simplicial condition, we present a practical quadratic-complexity algorithm based on random projections which consistently detects all novel words of all topics using only up to second-order empirical word moments. This algorithm is amenable to distributed implementation making it attractive for big-data scenarios involving a network of large distributed databases.
We develop necessary and sufficient conditions and a novel provably consistent and efficient algorithm for discovering topics (latent factors) from observations (documents) that are realized from a probabilistic mixture of shared latent factors that
We present a necessary and sufficient condition for the separability of multipartite quantum states, this criterion also tells us how to write a multipartite separable state as a convex sum of separable pure states. To work out this criterion, we nee
In this contribution we are interested in proving that a given observation-driven model is identifiable. In the case of a GARCH(p, q) model, a simple sufficient condition has been established in [1] for showing the consistency of the quasi-maximum li
Minimizing the rank of a matrix subject to constraints is a challenging problem that arises in many applications in control theory, machine learning, and discrete geometry. This class of optimization problems, known as rank minimization, is NP-HARD,
Matrix regularity is a key to various problems in applied mathematics. The sufficient conditions, used for checking regularity of interval parametric matrices, usually fail in case of large parameter intervals. We present necessary and sufficient con