ﻻ يوجد ملخص باللغة العربية
We define new natural variants of the notions of weighted covering and separation numbers and discuss them in detail. We prove a strong duality relation between weighted covering and separation numbers and prove a few relations between the classical and weighted covering numbers, some of which hold true without convexity assumptions and for general metric spaces. As a consequence, together with some volume bounds that we discuss, we provide a bound for the famous Levi-Hadwiger problem concerning covering a convex body by homothetic slightly smaller copies of itself, in the case of centrally symmetric convex bodies, which is qualitatively the same as the best currently known bound. We also introduce the weighted notion of the Levi-Hadwiger covering problem, and settle the centrally-symmetric case, thus also confirm Nasz{o}dis equivalent fractional illumination conjecture in the case of centrally symmetric convex bodies (including the characterization of the equality case, which was unknown so far).
We propose an algorithm to reduce a k-chromatic graph to a complete graph of largest possible order through a well defined sequence of contractions. We introduce a new matrix called transparency matrix and state its properties. We then define correct
Hadwiger Conjecture has been an open problem for over a half century1,6, which says that there is at most a complete graph Kt but no Kt+1 for every t-colorable graph. A few cases of Hadwiger Conjecture, such as 1, 2, 3, 4, 5, 6-colorable graphs have
Given a convex disk $K$ and a positive integer $k$, let $vartheta_T^k(K)$ and $vartheta_L^k(K)$ denote the $k$-fold translative covering density and the $k$-fold lattice covering density of $K$, respectively. Let $T$ be a triangle. In a very recent p
Let $V$ be a Banach space where for fixed $n$, $1<n<dim(V)$, all of its $n$-dimensional subspaces are isometric. In 1932, Banach asked if under this hypothesis $V$ is necessarily a Hilbert space. Gromov, in 1967, answered it positively for even $n$ a
We define covering and separation numbers for functions. We investigate their properties, and show that for some classes of functions there is exact equality of separation and covering. We provide analogues for various geometric inequalities on cover