ﻻ يوجد ملخص باللغة العربية
Linear stability analysis of strongly coupled incompressible dusty plasma in presence of shear flow has been carried out using Generalized Hydrodynamical(GH) model. With the proper Galilean invariant GH model, a nonlocal eigenvalue analysis has been done using different velocity profiles. It is shown that the effect of elasticity enhances the growth rate of shear flow driven Kelvin- Helmholtz (KH) instability. The interplay between viscosity and elasticity not only enhances the growth rate but the spatial domain of the instability is also widened. The growth rate in various parameter space and the corresponding eigen functions are presented.
The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly
The properties of electrostatic transverse shear waves propagating in a strongly coupled dusty plasma with an equilibrium density gradient are examined using the generalized hydrodynamic equation. In the usual kinetic limit, the resulting equation ha
We address an experimental observation of shear flow of micron sized dust particles in a strongly coupled complex plasma in presence of a homogeneous magnetic field. Two concentric Aluminum rings of different size are placed on the lower electrode of
The influence of viscosity gradient (due to shear flow) on low frequency collective modes in strongly coupled dusty plasma is analyzed. It is shown that for a well known viscoelastic plasma model, the velocity shear dependent viscosity leads to an in
A generalized hydrodynamical model has been used to study low frequency modes in a strongly coupled, cold, magnetized dusty plasma. Such plasmas exhibit elastic properties due to strong correlations among dust particles and the tensile stresses impar