ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dynamical Properties of Virgo Cluster Disk Galaxies

130   0   0.0 ( 0 )
 نشر من قبل Nathalie N.Q. Ouellette
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By virtue of its proximity, the Virgo Cluster is an ideal laboratory for testing our understanding structure formation in the Universe. In this spirit, we present a dynamical study Virgo galaxies as part of the Spectroscopic and H-band Imaging of Virgo (SHIVir) survey. H$alpha$ rotation curves (RC) for our gas-rich galaxies were modelled with a multi-parameter fit function from which various velocity measurements were inferred. Our study takes advantage of archival and our own new data as we aim to compile the largest Tully-Fisher relation (TFR) for a cluster to date. Extended velocity dispersion profiles (VDP) are integrated over varying aperture sizes to extract representative velocity dispersions (VDs) for gas-poor galaxies. Considering the lack of a common standard for the measurement of a fiducial galaxy VD in the literature, we rectify this situation by determining the radius at which the measured VD yields the tightest Fundamental Plane (FP). We found that radius to be at least 1 $R_{rm e}$, which exceeds the extent of most dispersion profiles in other works.



قيم البحث

اقرأ أيضاً

220 - E. Toloba 2009
We present new observational results on the kinematical, morphological, and stellar population properties of a sample of 21 dEs located both in the Virgo cluster and in the field, which show that 52% of the dEs i) are rotationally supported, ii) exhi bit structural signs of typical rotating systems such as discs, bars or spiral arms, iii) are younger (~3 Gyr) than non-rotating dEs, and iv) are preferentially located either in the outskirts of Virgo or in the field. This evidence is consistent with the idea that rotationally supported dwarfs are late type spirals or irregulars that recently entered the cluster and lost their gas through a ram pressure stripping event, quenching their star formation and becoming dEs through passive evolution. We also find that all, but one, galaxies without photometric hints for hosting discs are pressure supported and are all situated in the inner regions of the cluster. This suggests a different evolution from the rotationally supported systems. Three different scenarios for these non-rotating galaxies are discussed (in situ formation, harassment and ram pressure stripping).
We use dust scaling relations to investigate the hypothesis that Virgo cluster transition-type dwarfs are infalling star-forming field galaxies, which is argued based on their optical features (e.g. disks, spiral arms, bars) and kinematic properties similar to late-type galaxies. After their infall, environmental effects gradually transform them into early-type galaxies through the removal of their interstellar medium and quenching of all star formation activity. In this paper, we aim to verify whether this hypothesis holds using far-infrared diagnostics based on Herschel observations of the Virgo cluster taken as part of the Herschel Virgo Cluster Survey (HeViCS). We select transition-type objects in the nearest cluster, Virgo, based on spectral diagnostics indicative for their residual or ongoing star formation. We detect dust Md ~ 10^{5-6} Msun in 36% of the transition-type dwarfs located on the high end of the stellar mass distribution. This suggests that the dust reservoirs present in non-detections fall just below the Herschel detection limit (< 1.1x10^5 Msun). Dust scaling relations support the hypothesis of a transformation between infalling late-type galaxies to quiescent low-mass spheroids governed by environmental effects, with dust-to-stellar mass fractions for transition-type dwarfs in between values characteristic for late-type objects and the lower dust fractions observed in early-type galaxies. Several transition-type dwarfs demonstrate blue central cores, hinting at the radially outside-in removal of gas and quenching of star formation activity. The fact that dust is also confined to the inner regions suggests that metals are stripped in the outer regions along with the gas. In the scenario of most dust being stripped from the galaxy along with the gas, we argue that... (abridged)
137 - T. Lisker 2009
In the light of the question whether most early-type dwarf (dE) galaxies in clusters formed through infall and transformation of late-type progenitors, we search for an imprint of such an infall history in the oldest, most centrally concentrated dE s ubclass of the Virgo cluster: the nucleated dEs that show no signatures of disks or central residual star formation. We select dEs in a (projected) region around the central elliptical galaxies, and subdivide them by their line-of-sight velocity into fast-moving and slow-moving ones. These subsamples turn out to have significantly different shapes: while the fast dEs are relatively flat objects, the slow dEs are nearly round. Likewise, when subdividing the central dEs by their projected axial ratio into flat and round ones, their distributions of line-of-sight velocities differ significantly: the flat dEs have a broad, possibly two-peaked distribution, whereas the round dEs show a narrow single peak. We conclude that the round dEs probably are on circularized orbits, while the flat dEs are still on more eccentric or radial orbits typical for an infalling population. In this picture, the round dEs would have resided in the cluster already for a long time, or would even be a cluster-born species, explaining their nearly circular orbits. They would thus be the first generation of Virgo cluster dEs. Their shape could be caused by dynamical heating through repeated tidal interactions. Further investigations through stellar population measurements and studies of simulated galaxy clusters would be desirable to obtain definite conclusions on their origin.
226 - W.B. Sparks 2012
The physical relationship between low-excitation gas filaments at ~10^4 K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ~10^7 K in the centers of many galaxy clusters is not understood. It is unclear whether the ~10^4 K fi laments have cooled and condensed from the ambient hot (~10^7 K) medium or have some other origin such as the infall of cold gas in a merger, or the disturbance of an internal cool reservoir of gas by nuclear activity. Observations of gas at intermediate temperatures (~10^5-10^6 K) can potentially reveal whether the central massive galaxies are gaining cool gas through condensation or losing it through conductive evaporation and hence identify plausible scenarios for transport processes in galaxy cluster gas. Here we present spectroscopic detection of ~10^5 K gas spatially associated with the H-alpha filaments in a central cluster galaxy, M87 in the Virgo Cluster. The measured emission-line fluxes from triply ionized carbon (CIV 1549 A) and singly ionized helium (HeII 1640 A) are consistent with a model in which thermal conduction determines the interaction between hot and cold phases.
We present stellar age profiles for 64 Virgo cluster disk galaxies whose analysis poses a challenge for current galaxy formation models. Our results can be summarized as follows: first, and contrary to observations of field galaxies, these cluster ga laxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically-significant
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا