ﻻ يوجد ملخص باللغة العربية
Phase I of the NEXT-100 $0 ubetabeta$ experiment (NEW) is scheduled for data taking in 2015 at Laboratorio Subterraneo de Canfranc in the Spanish Pyrenees. Thanks to the light proportional technique, NEW anticipates an outstanding energy resolution nearing the Fano factor in Xenon (0.5-1%FWHM@$Q_{betabeta,^{136}Xe}$), with a TPC-design that allows tracking and identification of the double end-blob feature of the $0 ubetabeta$ decay. When properly mastered, the combination of these two assets can suppress the irreducible $2 ubetabeta$ and (single-blob) $gamma$ backgrounds from natural radioactivity to minute levels, of the order of $5times{10^{-4}}$ ckky. Given our knowledge of the available phase-space as obtained from neutrino oscillation experiments, this feat will expectedly allow for a sensitivity to the effective electron neutrino mass of $m_{betabeta}simeq 30$ meV for exposures at the 20 ton $times$ year scale. Hence, ultimately, a full survey of the inverse hierarchy of the neutrino mass ordering appears to be within reach for a ton-scale experiment based on this technology. NEW, with 10 kg of Xenon 90%-enriched in $^{136}$Xe, sets an unprecedented scale for gaseous Xenon TPCs and will be an important milestone for its anticipated upgrades (100 kg and 1 ton). I briefly summarize the status of the NEXT experiment, from the main results obtained with $sim 1$ kg prototypes that substantiate the concept, to the ongoing works for deploying its first phase.
The Mu3e experiment aims to find or exclude the lepton flavour violating decay $mu rightarrow eee$ at branching fractions above $10^{-16}$. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to
This paper discusses a parallelized event reconstruction of the COMET Phase-I experiment. The experiment aims to discover charged lepton flavor violation by observing 104.97 MeV electrons from neutrinoless muon-to-electron conversion in muonic atoms.
NEXT-DEMO is a large-scale prototype of the NEXT-100 detector, an electroluminescent time projection chamber that will search for the neutrinoless double beta decay of Xe-136 using 100 to 150 kg of enriched xenon gas. NEXT-DEMO was built to prove the
NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the $^{136}$Xe isotope. It is under construction in the Laboratorio Subterraneo de Canfranc
Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity-induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of lo