ترغب بنشر مسار تعليمي؟ اضغط هنا

AGB nucleosynthesis at low metallicity: what can we learn from carbon- and s-elements-enhanced metal-poor stars

105   0   0.0 ( 0 )
 نشر من قبل Carlo Abate
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CEMP-s stars are very metal-poor stars with enhanced abundances of carbon and s-process elements. They form a significant proportion of the very metal-poor stars in the Galactic halo and are mostly observed in binary systems. This suggests that the observed chemical anomalies are due to mass accretion in the past from an asymptotic giant branch (AGB) star. Because CEMP-s stars have hardly evolved since their formation, the study of their observed abundances provides a way to probe our models of AGB nucleosynthesis at low metallicity. To this end we included in our binary evolution model the results of the latest models of AGB nucleosynthesis and we simulated a grid of 100,000 binary stars at metallicity Z=0.0001 in a wide range of initial masses and separations. We compared our modelled stars with a sample of 60 CEMP-s stars from the SAGA database of metal-poor stars. For each observed CEMP-s star of the sample we found the modelled star that reproduces best the observed abundances. The result of this comparison is that we are able to reproduce simultaneously the observed abundance of the elements affected by AGB nucleosynthesis (e.g. C, Mg, s-elements) for about 60% of the stars in the sample.



قيم البحث

اقرأ أيضاً

The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-poor (EMP) stars with [Fe/H] leq -2.5 share the common features of carbon enhan cement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] lesssim -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.
86 - Jason Tumlinson 2007
The two known ``hyper-metal-poor (HMP) stars, HE0107-5240 and HE1327-2326, have extremely high enhancements of the light elements C, N, and O relative to Fe and appear to represent a statistically significant excess population relative to the halo me tallicity distribution extrapolated from [Fe/H] > -3. This study weighs the available evidence for and against three hypothetical origins for these stars: (1) that they formed from gas enriched by a primordial ``faint supernova, (2) that they formed from gas enriched by core-collapse supernovae and C-rich gas ejected in rotation-driven winds from massive stars, and (3) that they formed as the low-mass secondaries in binary systems at Z ~ 10^{-5.5} Zsun and acquired their light-element enhancements from an intermediate-mass companion as it passed through an AGB phase. The observations interpreted here, especially the depletion of lithium seen in HE1327-2326, favor the binary mass-transfer hypothesis. If HE0107-5240 and HE1327-2326 formed in binary systems, the statistically significant absence of isolated and/or C-normal stars at similar [Fe/H] implies that low-mass stars could form at that metallicity, but that masses M ~< 1.4 Msun were disfavored in the IMF. This result is also explained if the abundance-derived top-heavy IMF for primordial stars persists to [Fe/H] ~ -5.5. This finding indicates that low-mass star formation was possible at extremely low metallicity, and that the typical stellar mass may have had a complex dependence on metallicity rather than a sharp transition driven solely by gas cooling.
Many observed CEMP stars are found in binary systems and show enhanced abundances of $s$-elements. The origin of the chemical abundances of these CEMP-$s$ stars is believed to be accretion in the past of enriched material from a primary star in the A GB phase. We investigate the mechanism of mass transfer and the process of nucleosynthesis in low-metallicity AGB stars by modelling the binary systems in which the observed CEMP-$s$ stars were formed. For this purpose we compare a sample of $67$ CEMP-$s$ stars with a grid of binary stars generated by our binary evolution and nucleosynthesis model. We classify our sample CEMP-$s$ stars in three groups based on the observed abundance of europium. In CEMP$-s/r$ stars the europium-to-iron ratio is more than ten times higher than in the Sun, whereas it is lower than this threshold in CEMP$-s/nr$ stars. No measurement of europium is currently available for CEMP-$s/ur$ stars. On average our models reproduce well the abundances observed in CEMP-$s/nr$ stars, whereas in CEMP-$s/r$ stars and CEMP-$s/ur$ stars the abundances of the light-$s$ elements are systematically overpredicted by our models and in CEMP-$s/r$ stars the abundances of the heavy-$s$ elements are underestimated. In all stars our modelled abundances of sodium overestimate the observations. This discrepancy is reduced only in models that underestimate the abundances of most of the $s$-elements. Furthermore, the abundance of lead is underpredicted in most of our model stars. These results point to the limitations of our AGB nucleosynthesis model, particularly in the predictions of the element-to-element ratios. Finally, in our models CEMP-$s$ stars are typically formed in wide systems with periods above 10000 days, while most of the observed CEMP-$s$ stars are found in relatively close orbits with periods below 5000 days.
A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f rom an AGB binary companion. Here we investigate and compare the binary properties of three carbon-enhanced sub-classes: The metal-poor CEMP-s stars that are additionally enhanced in barium; the higher metallicity (sg)CH- and Ba II stars also enhanced in barium; and the metal-poor CEMP-no stars, not enhanced in barium. Through comparison with simulations, we demonstrate that all barium-enhanced populations are best represented by a ~100% binary fraction with a shorter period distribution of at maximum ~20,000 days. This result greatly strengthens the hypothesis that a similar binary mass transfer origin is responsible for their chemical patterns. For the CEMP-no group we present new radial velocity data from the Hobby-Eberly Telescope for 15 stars to supplement the scarce literature data. Two of these stars show indisputable signatures of binarity. The complete CEMP-no dataset is clearly inconsistent with the binary properties of the CEMP-s class, thereby strongly indicating a different physical origin of their carbon enhancements. The CEMP-no binary fraction is still poorly constrained, but the population resembles more the binary properties in the Solar Neighbourhood.
A significant fraction of all metal-poor stars are carbon-rich. Most of these carbon-enhanced metal-poor (CEMP) stars also show enhancement in elements produced mainly by the s-process (CEMP-s stars) and evidence suggests that the origin of these non -standard abundances can be traced to mass transfer from a binary asymptotic giant branch (AGB) companion. Thus, observations of CEMP-s stars are commonly used to infer the nucleosynthesis output of low-metallicity AGB stars. A crucial step in this exercise is understanding what happens to the accreted material after mass transfer ceases. Here we present models of the post-mass-transfer evolution of CEMP-s stars considering the physics of thermohaline mixing and atomic diffusion, including radiative levitation. We find that stars with typical CEMP-s star masses (M ~ 0.85 Msun) have very shallow convective envelopes (Menv < 1e-7 Msun). Hence, the surface abundance variations arising from the competition between gravitational settling and radiative levitation should be orders of magnitude larger than observed (e.g. [C/Fe]<-1 or [C/Fe]>+4). We are therefore unable to reproduce the spread in the observed abundances with these models and conclude that some other physical process must largely suppress atomic diffusion in the outer layers of CEMP-s stars. We demonstrate that this could be achieved by some additional (turbulent) mixing process operating at the base of the convective envelope, as found by other authors. Alternatively, mass-loss rates around 1e-13 Msun/yr could also negate most of the abundance variations by eroding the surface layers and forcing the base of the convective envelope to move inwards in mass. Since atomic diffusion cannot have a substantial effect on the surface abundances of CEMP-s stars, the dilution of the accreted material, while variable in degree from one star to the next, is most likely the same for all elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا