ﻻ يوجد ملخص باللغة العربية
Rotational levels of molecular free radicals can be tuned to degeneracy using laboratory-scale magnetic fields. Because of their intrinsically narrow width, these level crossings of opposite-parity states have been proposed for use in the study of parity-violating interactions and other applications. We experimentally study a typical manifestation of this system using $^{138}$BaF. Using a Stark-mixing method for detection, we demonstrate level-crossing signals with spectral width as small as 6 kHz. We use our data to verify the predicted lineshapes, transition dipole moments, and Stark shifts, and to precisely determine molecular magnetic g-factors. Our results constitute an initial proof-of-concept for use of this system to study nuclear spin-dependent parity violating effects.
We present a novel slowing scheme for beams of laser-coolable diatomic molecules reminiscent of Zeeman slowing of atomic beams. The scheme results in efficient compression of the 1-dimensional velocity distribution to velocities trappable by magnetic
We demonstrate the mixing of rotational states in the ground electronic state using microwave radiation to enhance optical cycling in the molecule yttrium (II) monoxide (YO). This mixing technique is used in conjunction with a frequency modulated and
We present models for a heteronuclear diatomic molecular ion in a linear Paul trap in a rigid-rotor approximation, one purely classical, the other where the center-of-mass motion is treated classically while rotational motion is quantized. We study t
The rich information content of measurements in the molecular frame rather than the laboratory frame has motivated the development of several methods for aligning gas phase molecules in space. Even so, for asymmetric tops the problem of making molecu
Accurate and comprehensive diatomic molecular spectroscopic data have long been vital in a wide variety of applications for measuring and monitoring astrophysical, industrial and other gaseous environments. These data are also used extensively for be