ﻻ يوجد ملخص باللغة العربية
As a continuation of our recent work on the electromagnetic properties of the doubly charmed $Xi_{cc}$ baryon, we compute the charge radii and the magnetic moments of the singly charmed $Sigma_c$, $Omega_c$ and the doubly charmed $Omega_{cc}$ baryons in 2+1 flavor Lattice QCD. In general, the charmed baryons are found to be compact as compared to the proton. The charm quark acts to decrease the size of the baryons to smaller values. We discuss the mechanism behind the dependence of the charge radii on the light valence- and sea-quark masses. The magnetic moments are found to be almost stable with respect to changing quark mass. We investigate the individual quark sector contributions to the charge radii and the magnetic moments. The magnetic moments of the singly charmed baryons are found to be dominantly determined by the light quark and the role of the charm quark is significantly enhanced for the doubly charmed baryons.
We compute the electromagnetic properties of Xi_cc baryons in 2+1 flavor Lattice QCD. By measuring the electric charge and magnetic form factors of Xi_cc baryons, we extract the magnetic moments, charge and magnetic radii as well as the Xi_cc Xi_cc r
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their con
We evaluate the spin-$3/2 to$ spin-$1/2$ electromagnetic transitions of the doubly charmed baryons on 2+1 flavor, $32^3 times 64$ PACS-CS lattices with a pion mass of $156(9)$ MeV/c$^2$. A relativistic heavy quark action is employed to minimize the a
The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. Calculations are performed on anisotropic lattices with temporal and spatial spacings a_t = 0.0351(2) and a_s ~ 0.12 fm respec
We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16^3 X 128, with inverse spacing in temporal direction 1/a_t = 5.67(4)