ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimizing snake locomotion on an inclined plane

270   0   0.0 ( 0 )
 نشر من قبل Xiaolin Wang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a model to study the locomotion of snakes on an inclined plane. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes---triangular and sinusoidal waves---across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficient, we find power-law scalings for the optimal wave amplitudes and corresponding costs of locomotion. We give an asymptotic analysis to show that the optimal snake motions are traveling-wave motions with amplitudes given by the same scaling laws found in the numerics.



قيم البحث

اقرأ أيضاً

Snake robots, comprised of sequentially connected joint actuators, have recently gained increasing attention in the industrial field, like life detection in narrow space. Such robots can navigate through the complex environment via the cooperation of multiple motors located on the backbone. However, controlling the robots in an unknown environment is challenging, and conventional control strategies can be energy inefficient or even fail to navigate to the destination. In this work, a snake locomotion gait policy is developed via deep reinforcement learning (DRL) for energy-efficient control. We apply proximal policy optimization (PPO) to each joint motor parameterized by angular velocity and the DRL agent learns the standard serpenoid curve at each timestep. The robot simulator and task environment are built upon PyBullet. Comparing to conventional control strategies, the snake robots controlled by the trained PPO agent can achieve faster movement and more energy-efficient locomotion gait. This work demonstrates that DRL provides an energy-efficient solution for robot control.
Muscles are biological actuators extensively studied in the frame of Hills classic empirical model as isolated biomechanical entities, which hardly applies to a living organism subjected to physiological and environmental constraints. Here we elucida te the overarching principle of a emph{living} muscle action for locomotion, considering it from the thermodynamic viewpoint as an assembly of actuators (muscle units) connected in parallel, operating via chemical-to-mechanical energy conversion under mixed (potential and flux) boundary conditions. Introducing the energy cost of effort, $COE_-$, as the generalization of the well-known oxygen cost of transport, $COT$, in the frame of our compact locally linear non-equilibrium thermodynamics model, we analyze oxygen consumption measurement data from a documented experiment on energy cost management and optimization by horses moving at three different gaits. Horses adapt to a particular gait by mobilizing a nearly constant number of muscle units minimizing waste production per unit distance covered; this number significantly changes during transition between gaits. The mechanical function of the animal is therefore determined both by its own thermodynamic characteristics and by the metabolic operating point of the locomotor system.
Compared to agile legged animals, wheeled and tracked vehicles often suffer large performance loss on granular surfaces like sand and gravel. Understanding the mechanics of legged locomotion on granular media can aid the development of legged robots with improved mobility on granular surfaces; however, no general force model yet exists for granular media to predict ground reaction forces during complex limb intrusions. Inspired by a recent study of sand-swimming, we develop a resistive force model in the vertical plane for legged locomotion on granular media. We divide an intruder of complex morphology and kinematics, e.g., a bio-inspired robot L-leg rotated through uniform granular media (loosely packed ~ 1 mm diameter poppy seeds), into small segments, and measure stresses as a function of depth, orientation, and direction of motion using a model leg segment. Summation of segmental forces over the intruder predicts the net forces on both an L-leg and a reversed L-leg rotated through granular media with better accuracy than using simple one-dimensional penetration and drag force models. A multi-body dynamic simulation using the resistive force model predicts the speeds of a small legged robot (15 cm, 150 g) moving on granular media using both L-legs and reversed L-legs.
Motivated by the motion of nematode sperm cells, we present a model for the motion of an adhesive gel on a solid substrate. The gel polymerizes at the leading edge and depolymerizes at the rear. The motion results from a competition between a self-ge nerated swelling gradient and the adhesion on the substrate. The resulting stress provokes the rupture of the adhesion points and allows for the motion. The model predicts an unusual force-velocity relation which depends in significant ways on the point of application of the force.
Granular media (GM) present locomotor challenges for terrestrial and extraterrestrial devices because they can flow and solidify in response to localized intrusion of wheels, limbs, and bodies. While the development of airplanes and submarines is aid ed by understanding of hydrodynamics, fundamental theory does not yet exist to describe the complex interactions of locomotors with GM. In this paper, we use experimental, computational, and theoretical approaches to develop a terramechanics for bio-inspired locomotion in granular environments. We use a fluidized bed to prepare GM with a desired global packing fraction, and use empirical force measurements and the Discrete Element Method (DEM) to elucidate interaction mechanics during locomotion-relevant intrusions in GM such as vertical penetration and horizontal drag. We develop a resistive force theory (RFT) to account for more complex intrusions. We use these force models to understand the locomotor performance of two bio-inspired robots moving on and within GM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا