ترغب بنشر مسار تعليمي؟ اضغط هنا

$GHZ$ state generation of three Josephson qubits in presence of bosonic baths

114   0   0.0 ( 0 )
 نشر من قبل Samuele Spilla
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze an entangling protocol to generate tripartite Greenberger-Horne-Zeilinger states in a system consisting of three superconducting qubits with pairwise coupling. The dynamics of the open quantum system is investigated by taking into account the interaction of each qubit with an independent bosonic bath with an ohmic spectral structure. To this end a microscopic master equation is constructed and exactly solved. We find that the protocol here discussed is stable against decoherence and dissipation due to the presence of the external baths.



قيم البحث

اقرأ أيضاً

Achieving individual qubit readout is a major challenge in the development of scalable superconducting quantum processors. We have implemented the multiplexed readout of a four transmon qubit circuit using non-linear resonators operated as Josephson bifurcation amplifiers. We demonstrate the simultaneous measurement of Rabi oscillations of the four transmons. We find that multiplexed Josephson bifurcation is a high-fidelity readout method, the scalability of which is not limited by the need of a large bandwidth nearly quantum-limited amplifier as is the case with linear readout resonators.
Non-equilibrium quasiparticles are possible sources for decoherence in superconducting qubits because they can lead to energy decay or dephasing upon tunneling across Josephson junctions. Here, we investigate the impact of the intrinsic properties of two-dimensional transmon qubits on quasiparticle tunneling (QPT) and discuss how we can use QPT to gain critical information about the Josephson junction quality and device performance. We find the tunneling rate of the non-equilibrium quasiparticles to be sensitive to the choice of the shunting capacitor material and their geometry in qubits. In some devices, we observe an anomalous temperature dependence of the QPT rate below 100 mK that deviates from a constant background associated with non-equilibrium quasiparticles. We speculate that high transmission sites within the Josephson junctions tunnel barrier can lead to this behavior, which we can model by assuming that the defect sites have a smaller effective superconducting gap than the leads of the junction. Our results present a unique characterization tool for tunnel barrier quality in Josephson junctions and shed light on how quasiparticles can interact with various elements of the qubit circuit.
Transferring the state of an information carrier from a sender to a receiver is an essential primitive in both classical and quantum communication and information processing. In a quantum process known as teleportation the unknown state of a quantum bit can be relayed to a distant party using shared entanglement and classical information. Here we present experiments in a solid-state system based on superconducting quantum circuits demonstrating the teleportation of the state of a qubit at the macroscopic scale. In our experiments teleportation is realized deterministically with high efficiency and achieves a high rate of transferred qubit states. This constitutes a significant step towards the realization of repeaters for quantum communication at microwave frequencies and broadens the tool set for quantum information processing with superconducting circuits.
We demonstrate and evaluate an on-demand source of single itinerant microwave photons. Photons are generated using a highly coherent, fixed-frequency qubit-cavity system, and a protocol where the microwave control field is far detuned from the photon emission frequency. By using a Josephson parametric amplifier (JPA), we perform efficient single-quadrature detection of the state emerging from the cavity. We characterize the imperfections of the photon generation and detection, including detection inefficiency and state infidelity caused by measurement backaction over a range of JPA gains from 17 to 33 dB. We observe that both detection efficiency and undesirable backaction increase with JPA gain. We find that the density matrix has its maximum single photon component $rho_{11} = 0.36 pm 0.01$ at 29 dB JPA gain. At this gain, backaction of the JPA creates cavity photon number fluctuations that we model as a thermal distribution with an average photon number $bar{n} = 0.041 pm 0.003$.
Josephson junction arrays can be used as quantum channels to transfer quantum information between distant sites. In this work we discuss simple protocols to realize state transfer with high fidelity. The channels do not require complicate gating but use the natural dynamics of a properly designed array. We investigate the influence of static disorder both in the Josephson energies and in the coupling to the background gate charges, as well as the effect of dynamical noise. We also analyze the readout process, and its backaction on the state transfer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا