ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

126   0   0.0 ( 0 )
 نشر من قبل Shigeru Yoshida
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultra-high energy cosmic-rays with ambient photons while propagating through intergalactic space. Exploiting IceCubes large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model independent quasi-differential 90% CL upper limit, which amounts to $E^2 phi_{ u_e + u_mu + u_tau} = 1.2 times 10^{-7}$ GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$ at 1 EeV, provides the most stringent constraint in the energy range from 10 PeV to 10 EeV. Our observation disfavors strong cosmological evolution of the highest energy cosmic ray sources such as the Fanaroff-Riley type II class of radio galaxies.



قيم البحث

اقرأ أيضاً

Neutrinos with energies above $10^{17}$ eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming $tau$ neutrinos with nearly tangential trajectories relative to the earth. No neutrino candidates were found in $sim,14.7$ years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The $90%$ C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an $E_ u^{-2}$ spectrum in the energy range $1.0 times 10^{17}~{rm eV} - 2.5 times 10^{19}~{rm eV}$ is $E^2 {rm d}N_ u/{rm d}E_ u < 4.4 times 10^{-9}~{rm GeV~cm^{-2}~s^{-1}~sr^{-1}}$, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays.
We explore the joint implications of ultrahigh energy cosmic ray (UHECR) source environments -- constrained by the spectrum and composition of UHECRs -- and the observed high energy astrophysical neutrino spectrum. Acceleration mechanisms producing p ower-law CR spectra $propto E^{-2}$ are compatible with UHECR data, if CRs at high rigidities are in the quasi-ballistic diffusion regime as they escape their source environment. Both gas- and photon-dominated source environments are able to account for UHECR observations, however photon-dominated sources do so with a higher degree of accuracy. However, gas-dominated sources are in tension with current neutrino constraints. Accurate measurement of the neutrino flux at $sim 10$ PeV will provide crucial information on the viability of gas-dominated sources, as well as whether diffusive shock acceleration is consistent with UHECR observations. We also show that UHECR sources are able to give a good fit to the high energy portion of the astrophysical neutrino spectrum, above $sim$ PeV. This common origin of UHECRs and high energy astrophysical neutrinos is natural if air shower data is interpreted with the textsc{Sibyll2.3c} hadronic interaction model, which gives the best-fit to UHECRs and astrophysical neutrinos in the same part of parameter space, but not for EPOS-LHC.
We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with impro ved sensitivity and extended energy coverage down to approximately 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the twenty-eight events at the $4sigma$ level. These twenty-eight events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected from the atmospheric muon and neutrino backgrounds. These properties are, however, consistent with generic predictions for an additional component of extraterrestrial origin.
We report on the results of the search for extremely-high energy (EHE) neutrinos with energies above $10^7$ GeV obtained with the partially ($sim$30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effec tive livetime, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at $E^2 phi_{ u_e+ u_mu+ u_tau}simeq 1.4 times 10^{-6}$ GeV cm$^{-2}$ sec$^{-1}$ sr$^{-1}$ for neutrinos in the energy range from $3times10^7$ to $3times10^9$ GeV.
The astrophysical neutrinos recently discovered by the IceCube neutrino telescope have the highest detected neutrino energies --- from TeV to PeV --- and travel the longest distances --- up to a few Gpc, the size of the observable Universe. These fea tures make them naturally attractive probes of fundamental particle-physics properties, possibly tiny in size, at energy scales unreachable by any other means. The decades before the IceCube discovery saw many proposals of particle-physics studies in this direction. Today, those proposals have become a reality, in spite of prevalent astrophysical unknowns. We showcase examples of studying fundamental neutrino physics at these scales, including some of the most stringent tests of physics beyond the Standard Model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا