ﻻ يوجد ملخص باللغة العربية
IGR J18483-0311 is a supergiant fast X-ray transient whose compact object is located in a wide (18.5 d) and eccentric (e~0.4) orbit, which shows sporadic outbursts that reach X-ray luminosities of ~1e36 erg/s. We investigated the timing properties of IGR J18483-0311 and studied the spectra during bright outbursts by fitting physical models based on thermal and bulk Comptonization processes for accreting compact objects. We analysed archival INTEGRAL data collected in the period 2003-2010, focusing on the observations with IGR J18483-0311 in outburst. We searched for pulsations in the INTEGRAL light curves of each outburst. We took advantage of the broadband observing capability of INTEGRAL for the spectral analysis. We observed 15 outbursts, seven of which we report here for the first time. This data analysis almost doubles the statistics of flares of this binary system detected by INTEGRAL. A refined timing analysis did not reveal a significant periodicity in the INTEGRAL observation where a ~21s pulsation was previously detected. Neither did we find evidence for pulsations in the X-ray light curve of an archival XMM-Newton observation of IGR J18483-0311. In the light of these results the nature of the compact object in IGR J18483-0311 is unclear. The broadband X-ray spectrum of IGR J18483-0311 in outburst is well fitted by a thermal and bulk Comptonization model of blackbody seed photons by the infalling material in the accretion column of a neutron star. We also obtained a new measurement of the orbital period using the Swift/BAT light curve.
We report on a broad-band X-ray study (0.5-250 keV) of the Supergiant Fast X-ray Transient IGR J18483-0311 using archival INTEGRAL data and a new targeted XMM-Newton observation. Our INTEGRAL investigation discovered for the first time an unusually l
IGR J18483-0311 is an X-ray pulsar with transient X-ray activity, belonging to the new class of High Mass X-ray Binaries called Supergiant Fast X-ray Transients. This system is one of the two members of this class, together with IGR J11215-5952, wher
We present the results of combined INTEGRAL and XMM-Newton observations of the supergiant fast X-ray transient (SFXT) IGR J17354$-$3255. Three XMM-Newton observations of lengths 33.4 ks, 32.5 ks and 21.9 ks were undertaken, the first an initial point
IGR J17503-2636 is a hard X-ray transient discovered by INTEGRAL on 2018 August 11. This was the first ever reported X-ray emission from this source. Following the discovery, follow-up observations were carried out with Swift, Chandra, NICER, and NuS
We present the most recent results from our investigation on Supergiant Fast X-ray Transients, a class of High-Mass X-ray Binaries, with a possible counterpart in the gamma-ray energy band. Since 2007 Swift has contributed to this new field by detect