ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersolid phases of light in extended Jaynes-Cummings-Hubbard systems

128   0   0.0 ( 0 )
 نشر من قبل Andrew McCallum Martin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Jaynes-Cummings-Hubbard lattices provide unique properties for the study of correlated phases as they exhibit convenient state preparation and measurement, as well as in situ tuning of parameters. We show how to realize charge density and supersolid phases in Jaynes-Cummings-Hubbard lattices in the presence of long-range interactions. The long-range interactions are realized by the consideration of Rydberg states in coupled atom-cavity systems and the introduction of additional capacitive couplings in quantum-electrodynamics circuits. We demonstrate the emergence of supersolid and checkerboard solid phases, for calculations which take into account nearest neighbour couplings, through a mean-field decoupling.



قيم البحث

اقرأ أيضاً

We study the ground state phase diagrams of two-photon Dicke, the one-dimensional Jaynes-Cummings-Hubbard (JCH), and Rabi-Hubbard (RH) models using mean field, perturbation, quantum Monte Carlo (QMC), and density matrix renormalization group (DMRG) m ethods. We first compare mean field predictions for the phase diagram of the Dicke model with exact QMC results and find excellent agreement. The phase diagram of the JCH model is then shown to exhibit a single Mott insulator lobe with two excitons per site, a superfluid (SF, superradiant) phase and a large region of instability where the Hamiltonian becomes unbounded. Unlike the one-photon model, there are no higher Mott lobes. Also unlike the one-photon case, the SF phases above and below the Mott are surprisingly different: Below the Mott, the SF is that of photon {it pairs} as opposed to above the Mott where it is SF of simple photons. The mean field phase diagram of the RH model predicts a transition from a normal to a superradiant phase but none is found with QMC.
An array of high-Q electromagnetic resonators coupled to qubits gives rise to the Jaynes-Cummings-Hubbard model describing a superfluid to Mott insulator transition of lattice polaritons. From mean-field and strong coupling expansions, the critical p roperties of the model are expected to be identical to the scalar Bose-Hubbard model. A recent Monte Carlo study of the superfluid density on the square lattice suggested that this does not hold for the fixed-density transition through the Mott lobe tip. Instead, mean-field behavior with a dynamical critical exponent z=2 was found. We perform large-scale quantum Monte Carlo simulations to investigate the critical behavior of the superfluid density and the compressibility. We find z=1 at the tip of the insulating lobe. Hence the transition falls in the 3D XY universality class, analogous to the Bose-Hubbard model.
By using a state of art tensor network state method, we study the ground-state phase diagram of an extended Bose-Hubbard model on the square lattice with frustrated next-nearest neighboring tunneling. In the hardcore limit, tunneling frustration stab ilizes a peculiar half supersolid (HSS) phase with one sublattice being superfluid and the other sublattice being Mott Insulator away from half filling. In the softcore case, the model shows very rich phase diagrams above half filling, including three different types of supersolid phases depending on the interaction parameters. The considered model provides a promising route to experimentally search for novel stable supersolid state induced by frustrated tunneling in below half filling region with dipolar atoms or molecules.
220 - V. Peano , M. Thorwart 2010
We analyze the driven resonantly coupled Jaynes-Cummings model in terms of a quasienergy approach by switching to a frame rotating with the external modulation frequency and by using the dressed atom picture. A quasienergy surface in phase space emer ges whose level spacing is governed by a rescaled effective Planck constant. Moreover, the well-known multiphoton transitions can be reinterpreted as resonant tunneling transitions from the local maximum of the quasienergy surface. Most importantly, the driving defines a quasienergy well which is nonperturbative in nature. The quantum mechanical quasienergy state localized at its bottom is squeezed. In the Purcell limited regime, the potential well is metastable and the effective local temperature close to its minimum is uniquely determined by the squeezing factor. The activation occurs in this case via dressed spin flip transitions rather than via quantum activation as in other driven nonlinear quantum systems such as the quantum Duffing oscillator. The local maximum is in general stable. However, in presence of resonant coherent or dissipative tunneling transitions the system can escape from it and a stationary state arises as a statistical mixture of quasienergy states being localized in the two basins of attraction. This gives rise to a resonant or an antiresonant nonlinear response of the cavity at multiphoton transitions. The model finds direct application in recent experiments with a driven superconducting circuit QED setup.
The theory of non-Hermitian systems and the theory of quantum deformations have attracted a great deal of attention in the last decades. In general, non-Hermitian Hamiltonians are constructed by a textit{ad hoc} manner. Here, we study the (2+1) Dirac oscillator and show that in the context of the $kappa$--deformed Poincare-Hopf algebra its Hamiltonian is non-Hermitian but having real eigenvalues. The non-Hermiticity steams from the $kappa$-deformed algebra. From the mapping in [Bermudez textit{et al.}, Phys. Rev. A textbf{76}, 041801(R) 2007], we propose the $kappa$-JC and $kappa$--AJC models, which describe an interaction between a two-level system with a quantized mode of an optical cavity in the $kappa$--deformed context. We find that the $kappa$--deformation modifies the textit{Zitterbewegung} frequencies and the collapse and revival of quantum oscillations. In particular, the total angular momentum in the $z$--direction is not conserved anymore, as a direct consequence of the deformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا