ﻻ يوجد ملخص باللغة العربية
We consider a model for heterogeneous gene regulatory networks that is a generalization of the model proposed by Chatterjee and Durrett (2011) as an annealed approximation of Kauffmanns (1969) random Boolean networks. In this model, genes are represented by the nodes of a random directed graph on n vertices with specified in-degree distribution (resp. out-degree distribution or joint distribution of in-degree and out-degree), and the expression bias (the expected fraction of 1s in the Boolean functions) p is same for all nodes. Following a standard practice in the physics literature, we use a discrete-time threshold contact process with parameter q=2p(1-p) (in which a vertex with at least one occupied input at time t will be occupied at time t+1 with probability q, and vacant otherwise) on the above random graph to approximate the dynamics of the Boolean network. We show that there is a parameter r (which can be written explicitly in terms of first few moments of the degree distribution) such that, with probability tending to 1 as n goes to infinity, if 2p(1-p)r>1, then starting from all occupied sites the threshold contact process maintains a positive ({it quasi-stationary}) density of occupied sites for time which is exponential in n, whereas if 2p(1-p)r<1, then the persistence time of the threshold contact process is at most logarithmic in n. These two phases correspond to the chaotic and ordered behavior of the gene networks.
We study the competition interface between two growing clusters in a growth model associated to last-passage percolation. When the initial unoccupied set is approximately a cone, we show that this interface has an asymptotic direction with probabilit
Transient chaos is an ubiquitous phenomenon characterizing the dynamics of phase space trajectories evolving towards a steady state attractor in physical systems as diverse as fluids, chemical reactions and condensed matter systems. Here we show that
We give a rigorous proof of the fact that a phase transition discovered by Douglas and Kazakov in 1993 in the context of two-dimensional gauge theories occurs. This phase transition can be formulated in terms of the Brownian bridge on the unitary gro
We consider a class of continuous-time stochastic growth models on $d$-dimensional lattice with non-negative real numbers as possible values per site. The class contains examples such as binary contact path process and potlatch process. We show the e
We study the evolution of the probability density of ensembles of iterates of the logistic map that advance towards and finally remain at attractors of representative dynamical regimes. We consider the mirror families of superstable attractors along