ﻻ يوجد ملخص باللغة العربية
Realistic quantum computing is subjected to noise. A most important frontier in research of quantum computing is to implement noise-resilient quantum control over qubits. Dynamical decoupling can protect coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which automatically suppresses the noise effect. We designed and implemented a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelities of 0.91 and 0.88 were observed even with imperfect initial states. In the mean time, the qubit coherence time has been elongated by at least 30 folds. The design scheme does not require that the dynamical decoupling control commute with the qubit interaction and works for general systems. This work marks a step toward realistic quantum computing.
Sensing the internal dynamics of individual nuclear spins or clusters of nuclear spins has recently become possible by observing the coherence decay of a nearby electronic spin: the weak magnetic noise is amplified by a periodic, multi-pulse decoupli
Quantum imaginary time evolution is a powerful algorithm to prepare ground states and thermal states on near-term quantum devices. However, algorithmic errors induced by Trotterization and local approximation severely hinder its performance. Here we
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprote
Hybrid systems consisting of different types of qubits are promising for building quantum computers if they combine useful properties of their constituent qubits. However, they also pose additional challenges if one type of qubits is more susceptible
We present rigorous performance bounds for the optimal dynamical decoupling pulse sequence protecting a quantum bit (qubit) against pure dephasing. Our bounds apply under the assumption of instantaneous pulses and of bounded perturbing environment an