ترغب بنشر مسار تعليمي؟ اضغط هنا

Y Chromosomes of 40% Chinese Are Descendants of Three Neolithic Super-grandfathers

126   0   0.0 ( 0 )
 نشر من قبل Shi Yan
 تاريخ النشر 2013
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Demographic change of human populations is one of the central questions for delving into the past of human beings. To identify major population expansions related to male lineages, we sequenced 78 East Asian Y chromosomes at 3.9 Mbp of the non-recombining region (NRY), discovered >4,000 new SNPs, and identified many new clades. The relative divergence dates can be estimated much more precisely using molecular clock. We found that all the Paleolithic divergences were binary; however, three strong star-like Neolithic expansions at ~6 kya (thousand years ago) (assuming a constant substitution rate of 1e-9/bp/year) indicates that ~40% of modern Chinese are patrilineal descendants of only three super-grandfathers at that time. This observation suggests that the main patrilineal expansion in China occurred in the Neolithic Era and might be related to the development of agriculture.



قيم البحث

اقرأ أيضاً

44 - K. Davison 2005
The causes and implications of the regional variations in the spread of the incipient agriculture in Europe remain poorly understood. We apply population dynamics models to study the dispersal of the Neolithic in Europe from a localized area in the N ear East, solving the two-dimensional reaction-diffusion equation on a spherical surface. We focus on the role of major river paths and coastlines in the advance of farming to model the rapid advances of the Linear Pottery (LBK) and the Impressed Ware traditions along the Danube-Rhine corridor and the Mediterranean coastline respectively. We argue that the random walk of individuals, which results in diffusion of the population, can be anisotropic in those areas. The standard reaction-diffusion equation is thus supplemented with advection-like terms confined to the proximity of major rivers and coastlines. The model allows for the spatial variation in both the human mobility (diffusivity) and the carrying capacity of landscapes, reflecting the local altitude and latitude. This approach can easily be generalised to include other environmental factors, such as the bioproductivity of landscapes. Our model successfully accounts for the regional variations in the spread of the Neolithic, consistent with the radiocarbon dated data, and reproduces a time delay in the spread of farming to the Eastern Europe and Scandinavia.
How natural selection acts to limit the proliferation of transposable elements (TEs) in genomes has been of interest to evolutionary biologists for many years. To describe TE dynamics in populations, many previous studies have used models of transpos ition-selection equilibrium that rely on the assumption of a constant rate of transposition. However, since TE invasions are known to happen in bursts through time, this assumption may not be reasonable in natural populations. Here we propose a test of neutrality for TE insertions that does not rely on the assumption of a constant transposition rate. We consider the case of TE insertions that have been ascertained from a single haploid reference genome sequence and have subsequently had their allele frequency estimated in a population sample. By conditioning on the age of an individual TE insertion (using information contained in the number of substitutions that have occurred within the TE sequence since insertion), we determine the probability distribution for the insertion allele frequency in a population sample under neutrality. Taking models of varying population size into account, we then evaluate predictions of our model against allele frequency data from 190 retrotransposon insertions sampled from North American and African populations of Drosophila melanogaster. Using this non-equilibrium model, we are able to explain about 80% of the variance in TE insertion allele frequencies based on age alone. Controlling both for nonequilibrium dynamics of transposition and host demography, we provide evidence for negative selection acting against most TEs as well as for positive selection acting on a small subset of TEs. Our work establishes a new framework for the analysis of the evolutionary forces governing large insertion mutations like TEs, gene duplications or other copy number variants.
This paper develops a quasispecies model that incorporates the SOS response. We consider a unicellular, asexually replicating population of organisms, whose genomes consist of a single, double-stranded DNA molecule, i.e. one chromosome. We assume tha t repair of post-replication mismatched base-pairs occurs with probability $ lambda $, and that the SOS response is triggered when the total number of mismatched base-pairs exceeds $ l_S $. We further assume that the per-mismatch SOS elimination rate is characterized by a first-order rate constant $ kappa_{SOS} $. For a single fitness peak landscape where the master genome can sustain up to $ l $ mismatches and remain viable, this model is analytically solvable in the limit of infinite sequence length. The results, which are confirmed by stochastic simulations, indicate that the SOS response does indeed confer a fitness advantage to a population, provided that it is only activated when DNA damage is so extensive that a cell will die if it does not attempt to repair its DNA.
This paper develops a mathematical model describing the influence that conjugation-mediated Horizontal Gene Transfer (HGT) has on the mutation-selection balance in an asexually reproducing population of unicellular, prokaryotic organisms. It is assum ed that mutation-selection balance is reached in the presence of a fixed background concentration of antibiotic, to which the population must become resistant in order to survive. We analyze the behavior of the model in the limit of low and high antibiotic-induced first-order death rate constants, and find that the highest mean fitness is obtained at low rates of bacterial conjugation. As the rate of conjugation crosses a threshold, the mean fitness decreases to a minimum, and then rises asymptotically to a limiting value as the rate of conjugation becomes infinitely large. However, this limiting value is smaller than the mean fitness obtained in the limit of low conjugation rate. This dependence of the mean fitness on the conjugation rate is fairly small for the parameter ranges we have considered, and disappears as the first-order death rate constant due to the presence of antibiotic approaches zero. For large values of the antibiotic death rate constant, we have obtained an analytical solution for the behavior of the mean fitness that agrees well with the results of simulations. The results of this paper suggest that conjugation-mediated HGT has a slightly deleterious effect on the mean fitness of a population at mutation-selection balance. Therefore, we argue that HGT confers a selective advantage by allowing for faster adaptation to a new or changing environment. The results of this paper are consistent with the observation that HGT can be promoted by environmental stresses on a population.
Our understanding of the evolutionary process has gone a long way since the publication, 150 years ago, of On the origin of species by Charles R. Darwin. The XXth Century witnessed great efforts to embrace replication, mutation, and selection within the framework of a formal theory, able eventually to predict the dynamics and fate of evolving populations. However, a large body of empirical evidence collected over the last decades strongly suggests that some of the assumptions of those classical models necessitate a deep revision. The viability of organisms is not dependent on a unique and optimal genotype. The discovery of huge sets of genotypes (or neutral networks) yielding the same phenotype --in the last term the same organism--, reveals that, most likely, very different functional solutions can be found, accessed and fixed in a population through a low-cost exploration of the space of genomes. The evolution behind the curtain may be the answer to some of the current puzzles that evolutionary theory faces, like the fast speciation process that is observed in the fossil record after very long stasis periods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا