ترغب بنشر مسار تعليمي؟ اضغط هنا

Ridge Fusion in Statistical Learning

126   0   0.0 ( 0 )
 نشر من قبل Bradley Price
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a penalized likelihood method to jointly estimate multiple precision matrices for use in quadratic discriminant analysis and model based clustering. A ridge penalty and a ridge fusion penalty are used to introduce shrinkage and promote similarity between precision matrix estimates. Block-wise coordinate descent is used for optimization, and validation likelihood is used for tuning parameter selection. Our method is applied in quadratic discriminant analysis and semi-supervised model based clustering.



قيم البحث

اقرأ أيضاً

89 - Yifan Chen , Yun Yang 2021
Nystrom approximation is a fast randomized method that rapidly solves kernel ridge regression (KRR) problems through sub-sampling the n-by-n empirical kernel matrix appearing in the objective function. However, the performance of such a sub-sampling method heavily relies on correctly estimating the statistical leverage scores for forming the sampling distribution, which can be as costly as solving the original KRR. In this work, we propose a linear time (modulo poly-log terms) algorithm to accurately approximate the statistical leverage scores in the stationary-kernel-based KRR with theoretical guarantees. Particularly, by analyzing the first-order condition of the KRR objective, we derive an analytic formula, which depends on both the input distribution and the spectral density of stationary kernels, for capturing the non-uniformity of the statistical leverage scores. Numerical experiments demonstrate that with the same prediction accuracy our method is orders of magnitude more efficient than existing methods in selecting the representative sub-samples in the Nystrom approximation.
99 - Yifan Chen , Yun Yang 2021
Building a sketch of an n-by-n empirical kernel matrix is a common approach to accelerate the computation of many kernel methods. In this paper, we propose a unified framework of constructing sketching methods in kernel ridge regression (KRR), which views the sketching matrix S as an accumulation of m rescaled sub-sampling matrices with independent columns. Our framework incorporates two commonly used sketching methods, sub-sampling sketches (known as the Nystrom method) and sub-Gaussian sketches, as special cases with m=1 and m=infinity respectively. Under the new framework, we provide a unified error analysis of sketching approximation and show that our accumulation scheme improves the low accuracy of sub-sampling sketches when certain incoherence characteristic is high, and accelerates the more accurate but computationally heavier sub-Gaussian sketches. By optimally choosing the number m of accumulations, we show that a best trade-off between computational efficiency and statistical accuracy can be achieved. In practice, the sketching method can be as efficiently implemented as the sub-sampling sketches, as only minor extra matrix additions are needed. Our empirical evaluations also demonstrate that the proposed method may attain the accuracy close to sub-Gaussian sketches, while is as efficient as sub-sampling-based sketches.
We propose a penalized likelihood framework for estimating multiple precision matrices from different classes. Most existing methods either incorporate no information on relationships between the precision matrices, or require this information be kno wn a priori. The framework proposed in this article allows for simultaneous estimation of the precision matrices and relationships between the precision matrices, jointly. Sparse and non-sparse estimators are proposed, both of which require solving a non-convex optimization problem. To compute our proposed estimators, we use an iterative algorithm which alternates between a convex optimization problem solved by blockwise coordinate descent and a k-means clustering problem. Blockwise updates for computing the sparse estimator require solving an elastic net penalized precision matrix estimation problem, which we solve using a proximal gradient descent algorithm. We prove that this subalgorithm has a linear rate of convergence. In simulation studies and two real data applications, we show that our method can outperform competitors that ignore relevant relationships between precision matrices and performs similarly to methods which use prior information often uknown in practice.
Learning representations of data is an important problem in statistics and machine learning. While the origin of learning representations can be traced back to factor analysis and multidimensional scaling in statistics, it has become a central theme in deep learning with important applications in computer vision and computational neuroscience. In this article, we review recent advances in learning representations from a statistical perspective. In particular, we review the following two themes: (a) unsupervised learning of vector representations and (b) learning of both vector and matrix representations.
Understanding generalization and estimation error of estimators for simple models such as linear and generalized linear models has attracted a lot of attention recently. This is in part due to an interesting observation made in machine learning commu nity that highly over-parameterized neural networks achieve zero training error, and yet they are able to generalize well over the test samples. This phenomenon is captured by the so called double descent curve, where the generalization error starts decreasing again after the interpolation threshold. A series of recent works tried to explain such phenomenon for simple models. In this work, we analyze the asymptotics of estimation error in ridge estimators for convolutional linear models. These convolutional inverse problems, also known as deconvolution, naturally arise in different fields such as seismology, imaging, and acoustics among others. Our results hold for a large class of input distributions that include i.i.d. features as a special case. We derive exact formulae for estimation error of ridge estimators that hold in a certain high-dimensional regime. We show the double descent phenomenon in our experiments for convolutional models and show that our theoretical results match the experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا