ﻻ يوجد ملخص باللغة العربية
The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here we address this issue by considering the properties of non-Abelian error correction in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of $D(S_3)$. This shares many properties with important models such as the Fibonacci anyons, making our method applicable in general. The error model is a straightforward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of $7 %$ for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models.
In three spatial dimensions, particles are limited to either bosonic or fermionic statistics. Two-dimensional systems, on the other hand, can support anyonic quasiparticles exhibiting richer statistical behaviours. An exciting proposal for quantum co
Two-dimensional quantum loop gases are elementary examples of topological ground states with Abelian or non-Abelian anyonic excitations. While Abelian loop gases appear as ground states of local, gapped Hamiltonians such as the toric code, we show th
Modern quantum experiments provide examples of transport with non-commuting quantities, offering a tool to understand the interplay between thermal and quantum effects. Here we set forth a theory for non-Abelian transport in the linear response regim
Topological quantum computation started as a niche area of research aimed at employing particles with exotic statistics, called anyons, for performing quantum computation. Soon it evolved to include a wide variety of disciplines. Advances in the unde
We determine the conditions under which topological order survives a rapid quantum quench. Specifically, we consider the case where a quantum spin system is prepared in the ground state of the Toric Code Model and, after the quench, it evolves with a