ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple intrinsically identical single photon emitters in the solid-state

200   0   0.0 ( 0 )
 نشر من قبل Lachlan Rogers
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Emitters of indistinguishable single photons are crucial for the growing field of quantum technologies. To realize scalability and increase the complexity of quantum optics technologies, multiple independent yet identical single photon emitters are also required. However typical solid-state single photon sources are inherently dissimilar, necessitating the use of electrical feedback or optical cavities to improve spectral overlap between distinct emitters. Here, we demonstrate bright silicon-vacancy (SiV-) centres in low-strain bulk diamond which intrinsically show spectral overlap of up to 91% and near transform-limited excitation linewidths. Our results have impact upon the application of single photon sources for quantum optics and cryptography, and the production of next generation fluorophores for bio-imaging.



قيم البحث

اقرأ أيضاً

In the field of quantum photon sources, single photon emitter from solid is of fundamental importance for quantum computing, quantum communication, and quantum metrology. However, it has been an ultimate but seemingly distant goal to find the single photon sources that stable at room or high temperature, with high-brightness and broad ranges emission wavelength that successively cover ultraviolet to infrared in one host material. Here, we report an ultraviolet to near-infrared broad-spectrum single photon emitters (SPEs) based on a wide band-gap semiconductor material hexagonal boron nitride (hBN). The bright, high purity and stable SPEs with broad-spectrum are observed by using the resonant excitation technique. The single photon sources here can be operated at liquid helium, room temperature and even up to 1100 K. Depending on the excitation laser wavelengths, the SPEs can be dramatically observed from 357 nm to 896 nm. The single photon purity is higher than to 90 percentage and the narrowest linewidth of SPE is down to $sim$75 $mu$eV at low temperature, which reaches the resolution limit of our spectrometer. Our work not only paves a way to engineer a monolithic semiconductor tunable SPS, but also provides fundamental experimental evidence to understand the electronic and crystallographic structure of SPE defect states in hBN.
Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable nonlinear optical devices operating at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to nanoscale diamond devices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable orbital states and verify optical switching at the single-photon level by using photon correlation measurements. We use Raman transitions to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. Finally, we create entanglement between two SiV centers by detecting indistinguishable Raman photons emitted into a single waveguide. Entanglement is verified using a novel superradiant feature observed in photon correlation measurements, paving the way for the realization of quantum networks.
A strong limitation of linear optical quantum computing is the probabilistic operation of two-quantum bit gates based on the coalescence of indistinguishable photons. A route to deterministic operation is to exploit the single-photon nonlinearity of an atomic transition. Through engineering of the atom-photon interaction, phase shifters, photon filters and photon- photon gates have been demonstrated with natural atoms. Proofs of concept have been reported with semiconductor quantum dots, yet limited by inefficient atom-photon interfaces and dephasing. Here we report on a highly efficient single-photon filter based on a large optical non-linearity at the single photon level, in a near-optimal quantum-dot cavity interface. When probed with coherent light wavepackets, the device shows a record nonlinearity threshold around $0.3 pm 0.1$ incident photons. We demonstrate that directly reflected pulses consist of 80% single-photon Fock state and that the two- and three-photon components are strongly suppressed compared to the single-photon one.
Quantum technologies require robust and photostable single photon emitters (SPEs) that can be reliably engineered. Hexagonal boron nitride (hBN) has recently emerged as a promising candidate host to bright and optically stable SPEs operating at room temperature. However, the emission wavelength of the fluorescent defects in hBN has, to date, been shown to be uncontrolled. The emitters usually display a large spread of zero phonon line (ZPL) energies spanning over a broad spectral range (hundreds of nanometers), which hinders the potential development of hBN-based devices and applications. We demonstrate bottom-up, chemical vapor deposition growth of large-area, few layer hBN that hosts large quantities of SPEs: 100 per 10x10 {mu}m2. Remarkably, more than 85 percent of the emitters have a ZPL at (580{pm}10)nm, a distribution which is over an order of magnitude narrower than previously reported. Exploiting the high density and uniformity of the emitters, we demonstrate electrical modulation and tuning of the ZPL emission wavelength by up to 15 nm. Our results constitute a definite advancement towards the practical deployment of hBN single photon emitters in scalable quantum photonic and hybrid optoelectronic devices based on 2D materials.
147 - Zeyang Liao , Hyunchul Nha , 2016
We develop a general dynamical theory for studying a single photon transport in a one-dimensional (1D) waveguide coupled to multiple emitters which can be either identical or non-identical. In this theory, both the effects of the waveguide and non-wa veguide vacuum modes are included. This theory enables us to investigate the propagation of an emitter excitation or an arbitrary single photon pulse along an array of emitters coupled to a 1D waveguide. The dipole-dipole interaction induced by the non-waveguide modes, which is usually neglected in the literatures, can significantly modify the dynamics of the emitter system as well as the characteristics of output field if the emitter separation is much smaller than the resonance wavelength. Non-identical emitters can also strongly couple to each other if their energy difference is smaller than or of the order of the dipole-dipole energy shift. Interestingly, if their energy difference is close but non-zero, a very narrow transparency window around the resonance frequency can appear which does not occur for identical emitters. This phenomenon may find important applications in quantum waveguide devices such as optical switch and ultra narrow single photon frequency comb generator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا