ﻻ يوجد ملخص باللغة العربية
This thesis analyze the Wasserstein gradient flow of a functional defined as a double convolution of a non-smooth repulsive interaction potential. To be more precise, the potential under investigation has a -|x| behavior close to the origin. The already existent machinery of Wasserstein gradient flow is well posed for lambda-convex potential. In this case this property is lost, but it is proven that in the one dimensional case existence and uniqueness of the solution is still achieved.
We investigate a holographic model of superfluid flows with an external repulsive potential. When the strength of the potential is sufficiently weak, we analytically construct two steady superfluid flow solutions. As the strength of the potential is
We adapt the arguments in the recent work of Duyckaerts, Landoulsi, and Roudenko to establish a scattering result at the sharp threshold for the $3d$ focusing cubic NLS with a repulsive potential. We treat both the case of short-range potentials as p
We prove the equivalence between the notion of Wasserstein gradient flow for a one-dimensional nonlocal transport PDE with attractive/repulsive Newtonian potential on one side, and the notion of entropy solution of a Burgers-type scalar conservation
We have created a functional framework for a class of non-metric gradient systems. The state space is a space of nonnegative measures, and the class of systems includes the Forward Kolmogorov equations for the laws of Markov jump processes on Polish
The ability to create dynamic deformations of micron-sized structures is relevant to a wide variety of applications such as adaptable optics, soft robotics, and reconfigurable microfluidic devices. In this work we examine non-uniform lubrication flow