ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiparametric Cross Entropy for rare-event simulation

127   0   0.0 ( 0 )
 نشر من قبل Zdravko Botev
 تاريخ النشر 2013
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cross Entropy method is a well-known adaptive importance sampling method for rare-event probability estimation, which requires estimating an optimal importance sampling density within a parametric class. In this article we estimate an optimal importance sampling density within a wider semiparametric class of distributions. We show that this semiparametric version of the Cross Entropy method frequently yields efficient estimators. We illustrate the excellent practical performance of the method with numerical experiments and show that for the problems we consider it typically outperforms alternative schemes by orders of magnitude.



قيم البحث

اقرأ أيضاً

139 - A. Huang , Z. I. Botev 2013
We explore past and recent developments in rare-event probability estimation with a particular focus on a novel Monte Carlo technique Empirical Likelihood Maximization (ELM). This is a versatile method that involves sampling from a sequence of densit ies using MCMC and maximizing an empirical likelihood. The quantity of interest, the probability of a given rare-event, is estimated by solving a convex optimization program related to likelihood maximization. Numerical experiments are performed using this new technique and benchmarks are given against existing robust algorithms and estimators.
In this paper we use splitting technique to estimate the probability of hitting a rare but critical set by the continuous component of a switching diffusion. Instead of following classical approach we use Wonham filter to achieve multiple goals inclu ding reduction of asymptotic variance and exemption from sampling the discrete components.
The bifurcation method is a way to do rare event sampling -- to estimate the probability of events that are too rare to be found by direct simulation. We describe the bifurcation method and use it to estimate the transition rate of a double well pote ntial problem. We show that the associated constrained path sampling problem can be addressed by a combination of Crooks-Chandler sampling and parallel tempering and marginalization.
108 - Patrick Heas 2018
This paper deals with the estimation of rare event probabilities using importance sampling (IS), where an optimal proposal distribution is computed with the cross-entropy (CE) method. Although, IS optimized with the CE method leads to an efficient re duction of the estimator variance, this approach remains unaffordable for problems where the repeated evaluation of the score function represents a too intensive computational effort. This is often the case for score functions related to the solution of a partial differential equation (PDE) with random inputs. This work proposes to alleviate computation by the parsimonious use of a hierarchy of score function approximations in the CE optimization process. The score function approximation is obtained by selecting the surrogate of lowest dimensionality, whose accuracy guarantees to pass the current CE optimization stage. The selection relies on certified upper bounds on the error norm. An asymptotic analysis provides some theoretical guarantees on the efficiency and convergence of the proposed algorithm. Numerical results demonstrate the gain brought by the method in the context of pollution alerts and a system modeled by a PDE.
We study rare-event simulation for a class of problems where the target hitting sets of interest are defined via modern machine learning tools such as neural networks and random forests. This problem is motivated from fast emerging studies on the saf ety evaluation of intelligent systems, robustness quantification of learning models, and other potential applications to large-scale simulation in which machine learning tools can be used to approximate complex rare-event set boundaries. We investigate an importance sampling scheme that integrates the dominating point machinery in large deviations and sequential mixed integer programming to locate the underlying dominating points. Our approach works for a range of neural network architectures including fully connected layers, rectified linear units, normalization, pooling and convolutional layers, and random forests built from standard decision trees. We provide efficiency guarantees and numerical demonstration of our approach using a classification model in the UCI Machine Learning Repository.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا