ﻻ يوجد ملخص باللغة العربية
Client-side logic and storage are increasingly used in web and mobile applications to improve response time and availability. Current approaches tend to be ad-hoc and poorly integrated with the server-side logic. We present a principled approach to integrate client- and server-side storage. We support mergeable and strongly consistent transactions that target either client or server replicas and provide access to causally-consistent snapshots efficiently. In the presence of infrastructure faults, a client-assisted failover solution allows client execution to resume immediately and seamlessly access consistent snapshots without waiting. We implement this approach in SwiftCloud, the first transactional system to bring geo-replication all the way to the client machine. Example applications show that our programming model is useful across a range of application areas. Our experimental evaluation shows that SwiftCloud provides better fault tolerance and at the same time can improve both latency and throughput by up to an order of magnitude, compared to classical geo-replication techniques.
Todays datacenter applications are underpinned by datastores that are responsible for providing availability, consistency, and performance. For high availability in the presence of failures, these datastores replicate data across several nodes. This
Large-scale systems with all-flash arrays have become increasingly common in many computing segments. To make such systems resilient, we can adopt erasure coding such as Reed-Solomon (RS) code as an alternative to replication because erasure coding i
FP-Growth algorithm is a Frequent Pattern Min- ing (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivot
It is commonly agreed that highly parallel software on Exascale computers will suffer from many more runtime failures due to the decreasing trend in the mean time to failures (MTTF). Therefore, it is not surprising that a lot of research is going on
The growth of data, the need for scalability and the complexity of models used in modern machine learning calls for distributed implementations. Yet, as of today, distributed machine learning frameworks have largely ignored the possibility of arbitra