ﻻ يوجد ملخص باللغة العربية
We have investigated spin-wave excitations in a magnetic-field-induced 1/5-magnetization plateau phase in a triangular lattice antiferromagnet CuFeO2 (CFO), by means of inelastic neutron scattering measurements under applied magnetic fields of up to 13.4 T. Comparing the observed spectra with the calculations in which spin-lattice coupling effects for the nearest neighbor exchange interactions are taken into account, we have determined the Hamiltonian parameters in the field-induced 1/5- plateau phase, which directly show that CFO exhibits a bond order associated with the magnetic structure in this phase.
By means of neutron scattering measurements, we have investigated spin-wave excitation in a collinear four-sublattice (4SL) magnetic ground state of a triangular lattice antiferromagnet CuFeO2, which has been of recent interest as a strongly frustrat
We study effects of nonmagnetic impurities in a spin-1/2 frustrated triangular antiferromagnet with the aim of understanding the observed broadening of $^{13}$C NMR lines in the organic spin liquid material $kappa$-(ET)$_2$Cu$_2$(CN)$_3$. For high te
The perovskite Ba8CoNb6O24 comprises equilateral effective spin-1/2 Co2+ triangular layers separated by six non-magnetic layers. Susceptibility, specific heat and neutron scattering measurements combined with high-temperature series expansions and sp
Terahertz time-domain spectroscopy was performed to directly probe the low-energy (1-5 meV) electrodynamics of triangular lattice antiferromagnets CuFe1-xGaxO2 (x = 0.00, 0.01, and 0.035). We discovered an electromagnon (electric-field-active magnon)
We study the spin-$1/2$ Heisenberg model on the triangular lattice with the nearest-neighbor $J_1 > 0$, the next-nearest-neighobr $J_2 > 0$ Heisenberg interactions, and the additional scalar chiral interaction $J_{chi}(vec{S}_i times vec{S}_j) cdot v