ترغب بنشر مسار تعليمي؟ اضغط هنا

Relics of ancient post-AGB stars in a primitive meteorite

112   0   0.0 ( 0 )
 نشر من قبل Manavi Jadhav
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphite is one of the many presolar circumstellar condensate species found in primitive meteorites. While the isotopic compositions of low-density graphite grains indicate an origin in core-collapse supernovae, some high-density grains have extreme isotopic anomalies in C, Ca and Ti, which cannot be explained by envelope predictions of asymptotic giant branch (AGB) stars or theoretical supernova models. The Ca and Ti isotopic anomalies, however, match the predictions of He-shell abundances in AGB stars. In this study, we show that the C, Ca, and Ti isotopic anomalies are consistent with nucleosynthesis predictions of the H-ingestion phase during a very late thermal pulse (VLTP) event in post-AGB stars. The low $^{12}$C/$^{13}$C isotopic ratios in these grains are a result of abundant $^{12}$C efficiently capturing the protons that are being ingested during the VLTP. Very high neutron densities of $sim 10^{15}$ cm$^{-3}$, typical of the $i$-process, are achieved during this phase in post-AGB stars. The large $^{42,43,44}$Ca excesses in some graphite grains are indicative of neutron capture nucleosynthesis during VLTP. The comparison of VLTP nucleosynthesis calculations to the graphite data also indicate that apparent anomalies in the Ti isotopic ratios are due to large contributions from $^{46,48}$Ca, which cannot be resolved from the isobars $^{46,48}$Ti during the measurements. We conclude that presolar graphite grains with moderate to extreme Ca and Ti isotopic anomalies originate in post-AGB stars that suffer a very late thermal pulse.



قيم البحث

اقرأ أيضاً

There is ample evidence for strong magnetic fields in the envelopes of (Post-)Asymptotic Giant Branch (AGB) stars as well as supergiant stars. The origin and role of these fields are still unclear. This paper updates the current status of magnetic fi eld observations around AGB, post-AGB stars and describes their possible role during these stages of evolution. The discovery of magnetically aligned dust around a supergiant star is also highlighted. In our search for the origin of the magnetic fields, recent observations show the signatures of possible magnetic activity and rotation, indicating that the magnetic fields might be intrinsic to the AGB stars.
During the last years, many observational studies have revealed that binaries play an active role in the shaping of non spherical planetary nebulae. We review the different works that lead to the direct or indirect evidence for the presence of binary companions during the Asymptotic Giant Branch, proto-Planetary Nebula and Planetary Nebula phases. We also discuss how these binaries can influence the stellar evolution and possible future directions in the field.
Obscured by their circumstellar dusty envelopes post-AGB stars emit a large fraction of their energy in the infrared and thus, infrared sky surveys like IRAS were essential for discoveries of post-AGBs in the past. Now, with the AKARI infrared sky su rvey we can extend our knowledge about the late stages of stellar evolution. The long-term goal of our work is to define new photometric criteria to distinguish new post-AGB candidates from the AKARI data.
Post-AGB stars are key objects for the study of the dramatic morphological changes of low- to intermediate-mass stars on their evolution from the Asymptotic Giant Branch (AGB) towards the Planetary Nebula stage. There is growing evidences that binary interaction processes may very well have a determining role in the shaping process of many objects, but so far direct evidence is still weak. We aim at a systematic study of the dust distribution around a large sample of Post-AGB stars as a probe of the symmetry breaking in the nebulae around these systems. We used imaging in the mid-infrared to study the inner part of these evolved stars to probe direct emission from dusty structures in the core of Post-AGB stars in order to better understand their shaping mechanisms. We imaged a sample of 93 evolved stars and nebulae in the mid-infrared using VISIR/VLT, T-Recs/Gemini South and Michelle/Gemini North. We found that all the the Proto-Planetary Nebulae we resolved show a clear departure from spherical symmetry. 59 out of the 93 observed targets appear to be non resolved. The resolved targets can be divided in two categories. The nebulae with a dense central core, that are either bipolar and multipolar. The nebulae with no central core have an elliptical morphology.The dense central torus observed likely host binary systems which triggered fast outflows that shaped the nebulae.
We used a set of moderately-deep and high-resolution optical observations obtained with the Hubble Space Telescope to investigate the properties of the stellar population in the heavily obscured bulge globular cluster NGC 6256. The analysis of the co lor-magnitude diagram revealed a stellar population with an extended blue horizontal branch and severely affected by differential reddening, which was corrected taking into account color excess variations up to delta E(B-V) ~ 0.51. We implemented a Monte Carlo Markov Chain technique to perform the isochrone fitting of the observed color-magnitude diagram in order to derive the stellar age, the cluster distance and the average color excess in the cluster direction. Using different set of isochrones we found that NGC 6256 is characterized by a very old stellar age around 13.0 Gyr, with a typical uncertainty of ~ 0.5 Gyr. We also found an average color excess E(B-V) = 1.19 and a distance from the Sun of 6.8 kpc. We then derived the cluster gravitational center and measured its absolute proper motion using the Gaia-DR2 catalog. All this was used to back-integrate the cluster orbit in a Galaxy-like potential and measure its integrals of motion. It turned out that NGC 6256 is currently in a low-eccentricity orbit entirely confined within the bulge and its integrals of motion are fully compatible with a cluster purely belonging to the Galaxy native globular cluster population. All these pieces of evidence suggest that NGC 6256 is an extremely old relic of the past history of the Galaxy, formed during the very first stages of its assembly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا