ﻻ يوجد ملخص باللغة العربية
We formulate exact generalized nonequilibrium fluctuation relations for the quantum mechanical harmonic oscillator coupled to multiple harmonic baths. Each of the different baths is prepared in its own individual (in general nonthermal) state. Starting from the exact solution for the oscillator dynamics we study fluctuations of the oscillator position as well as of the energy current through the oscillator under general nonequilibrium conditions. In particular, we formulate a fluctuation-dissipation relation for the oscillator position autocorrelation function that generalizes the standard result for the case of a single bath at thermal equilibrium. Moreover, we show that the generating function for the position operator fullfills a generalized Gallavotti-Cohen-like relation. For the energy transfer through the oscillator, we determine the average energy current together with the current fluctuations. Finally, we discuss the generalization of the cumulant generating function for the energy transfer to nonthermal bath preparations.
We derive a general scheme to obtain quantum fluctuation relations for dynamical observables in open quantum systems. For concreteness we consider Markovian non-unitary dynamics that is unraveled in terms of quantum jump trajectories, and exploit tec
Continuing our work on the nature and existence of fluctuation-dissipation relations (FDR) in linear and nonlinear open quantum systems [1-3], here we consider such relations when a linear system is in a nonequilibrium steady state (NESS). With the m
We study the statistics of energy fluctuations in a three-level quantum system subject to a sequence of projective quantum measurements. We check that, as expected, the quantum Jarzynski equality holds provided that the initial state is thermal. The
In Newtonian mechanics, any closed-system dynamics of a composite system in a microstate will leave all its individual subsystems in distinct microstates, however this fails dramatically in quantum mechanics due to the existence of quantum entangleme
The non-equilibrium dynamics of quantum many-body systems is one of the most fascinating problems in physics. Open questions range from how they relax to equilibrium to how to extract useful work from them. A critical point lies in assessing whether