ﻻ يوجد ملخص باللغة العربية
GINGER is a proposed tridimensional array of laser gyroscopes with the aim of measuring the Lense-Thirring effect, predicted by the General Relativity theory, in a terrestrial laboratory environment. We discuss the required accuracy, the methods to achieve it, and the preliminary experimental work in this direction.
The paper discusses the optimal conguration of one or more ring lasers to be used for measuring the general relativistic effects of the rotation of the earth, as manifested on the surface of the planet. The analysis is focused on devices having their
We propose an under-ground experiment to detect the general relativistic effects due to the curvature of space-time around the Earth (de Sitter effect) and to rotation of the planet (dragging of the inertial frames or Lense-Thirring effect). It is ba
Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structur
Electron accelerations of the order of $10^{21} g$ obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a grav
We study a static, spherically symmetric wormhole model whose metric coincides with that of the so-called Ellis wormhole but the material source of gravity consists of a perfect fluid with negative density and a source-free radial electric or magneti