ﻻ يوجد ملخص باللغة العربية
For random matrices with tree-like structure there exists a recursive relation for the local Green functions whose solution permits to find directly many important quantities in the limit of infinite matrix dimensions. The purpose of this note is to investigate and compare expressions for the spectral density of random regular graphs, based on easy approximations for real solutions of the recursive relation valid for trees with large coordination number. The obtained formulas are in a good agreement with the results of numerical calculations even for small coordination number.
The random Lorentz gas (RLG) is a minimal model for transport in disordered media. Despite the broad relevance of the model, theoretical grasp over its properties remains weak. For instance, the scaling with dimension d of its localization transition
Although the spectra of random networks have been studied for a long time, the influence of network topology on the dense limit of network spectra remains poorly understood. By considering the configuration model of networks with four distinct degree
We study a model for a random walk of two classes of particles (A and B). Where both species are present in the same site, the motion of As takes precedence over that of Bs. The model was originally proposed and analyzed in Maragakis et al., Phys. Re
We present a simple strategy in order to show the existence and uniqueness of the infinite volume limit of thermodynamic quantities, for a large class of mean field disordered models, as for example the Sherrington-Kirkpatrick model, and the Derrida
We present a simple, perturbative approach for calculating spectral densities for random matrix ensembles in the thermodynamic limit we call the Perturbative Resolvent Method (PRM). The PRM is based on constructing a linear system of equations and ca