ﻻ يوجد ملخص باللغة العربية
We study the field-angle resolved electronic Raman scattering in 2-dimensional d-wave superconducting vortex states theoretically by quasi-classical approximation, the so-called Doppler-shift method. An analytic expression is obtained for the field angle dependence of the Raman scattering amplitude at zero temperature. After numerical integration, we obtain the scattering intensity for various field angles by changing the Raman shift energy. Field-angle resolved electronic Raman scattering turns out to be an effective method for probing unconventional superconducting gap structures. It shows a novel phenomenon: reversal of extrema as a function of frequency without changing temperature or field magnitude.
We report Raman scattering spectra for single crystals of overdoped Tl2Ba2CuO6+d (Tl-2201) at low temperatures. It was observed that the pair-breaking peaks in A1g and B1g spectra radically shift to lower energy with carrier doping. We interpret it a
Inelastic neutron scattering provides a probe for studying the spin and momentum structure of the superconducting gap. Here, using a two-orbital model for the Fe-pnicitide superconductors and an RPA-BCS approximation for the dynamic spin susceptibili
Electronic Raman scattering with in and out of (ab) plane polarizations have been performed on HgBa2Ca2Cu3O8+d in a slightly underdoped single crystal with a critical temperature Tc=122 K. We find that the d-wave pairing gap at the antinodes is highe
Pure electronic Raman spectra with no phonon structures superimposed to the electronic continuum, are reported, in optimally doped HgBa_{2}CaCu_{2}O_{6+delta } single crystals (T_{c }=126 K). As a consequence, the spectra in the A_{1g }, B_{1g } and
For YBa_2Cu_3O_{6+delta} and Bi_2Sr_2CaCu_2O_8 superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped s