We present timing and broad-band spectral studies of the high mass X-ray binary pulsar 4U 1909+07 using data from Suzaku observation during 2010 November 2-3. The pulse period of the pulsar is estimated to be 604.11+/-0.14 s. Pulsations are seen in the X-ray light curve up to ~70 keV. The pulse profile is found to be strongly energy-dependent: a complex, multi-peaked structure at low energy that becomes a simple single peak at higher energy. We found that the 1-70 keV pulse averaged continuum can be fitted by the sum of a black body and a partial covering Negative and Positive power-law with EXponential cutoff (NPEX) model. A weak iron fluorescence emission line at 6.4 keV was detected in the spectrum. An absorption like feature at ~44 keV was clearly seen in the residue of the spectral fitting, independent of the continuum model adopted. To check the possible presence of a CRSF in the spectrum, we normalized the pulsar spectrum with the spectrum of the Crab Nebula. The resulting Crab ratio also showed a clear dip centered at ~44 keV. We performed statistical tests on the residue of the spectral fitting and also on the Crab spectral ratio to determine the significance of the absorption like feature and identified it as a CRSF of the pulsar. We estimated the corresponding surface magnetic field of the pulsar to be 3.8 x 10^12 Gauss.