ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoluminescence in array of doped semiconductor nanocrystals

157   0   0.0 ( 0 )
 نشر من قبل Konstantin Reich
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dependence of the quantum yield of photoluminescence of a dense, periodic array of semiconductor nanocrystals (NCs) on the level of doping and NC size. Electrons introduced to NCs via doping quench photoluminescence by the Auger process, so that practically only NCs without electrons contribute to the photoluminescence. Computer simulation and analytical theory are used to find a fraction of such empty NCs as a function of the average number of donors per NC and NC size. For an array of small spherical NCs, the quantization gap between 1S and 1P levels leads to transfer of electrons from NCs with large number of donors to those without donors. As a result, empty NCs become extinct, and photoluminescence is quenched abruptly at an average number of donors per NC close to 1.8. The relative intensity of photoluminescence is shown to correlate with the type of hopping conductivity of an array of NCs.



قيم البحث

اقرأ أيضاً

112 - J. Perez-Conde 2001
The photoluminescence spectra of spherical CdTe nanocrystals with zincblende structure are studied by size-selective spectroscopic techniques. We observe a resonant Stokes shift of 15 meV when the excitation laser energy is tuned to the red side of t he absorption band at 2.236 eV. The experimental data are analyzed within a symmetry-based tight-binding theory of the exciton spectrum, which is first shown to account for the size dependence of the fundamental gap reported previously in the literature. The theoretical Stokes shift presented as a function of the gap shows a good agreement with the experimental data, indicating that the measured Stokes shift indeed arises from the electron-hole exchange interaction.
We study the low-temperature magneto-photoluminescence (PL) from individual CdSe nanocrystals. Nanocrystals having a small bright exciton fine structure splitting ($<$0.5 meV) exhibit a conventional left- and right-circularly polarized Zeeman PL doub let in applied magnetic fields. In contrast, nanocrystals with large fine structure splitting ($>$1 meV) show an anomalous magneto-PL polarization, wherein the lower-energy peak becomes circularly polarized with increasing field, while the higher-energy peak remains linearly polarized. This unusual behavior arises from strong mixing between the absorbing and emitting bright exciton levels due to strong anisotropic exchange interactions.
Recent experiments have shown that photoluminescence decay of silicon nanocrystals can be described by the stretched exponential function. We show here that the associated decay probability rate is the one-sided Levy stable distribution which describ es well the experimental data. The relevance of these conclusions to the underlying stochastic processes is discussed in terms of Levy processes.
We demonstrate that the temperature and doping dependencies of the photoluminescence (PL) spectra of a doped MoS2 monolayer have several peculiar characteristics defined by trion radiative decay. While only zero-momentum exciton states are coupled to light, radiative recombination of non-zero momentum trions is also allowed. This leads to an asymmetric broadening of the trion spectral peak and redshift of the emitted light with increasing temperature. The lowest energy trion state is dark, which is manifested by the sharply non-monotonic temperature dependence of the PL intensity. Our calculations combine the Dirac model for the single-particle states, the parameters for which are obtained from the first principle calculations, and the direct solution of the three-particle problem within the Tamm-Dancoff approximation. The numerical results are well captured by a simple model that yields analytical expressions for the temperature dependencies of the PL spectra.
Nonradiative processes limit optoelectronic functionality of nanocrystals and curb their device performance. Nevertheless, the dynamic structural origins of nonradiative relaxations in nanocrystals are not understood. Here, femtosecond electron diffr action measurements corroborated by atomistic simulations uncover transient lattice deformations accompanying radiationless electronic processes in semiconductor nanocrystals. Investigation of the excitation energy dependence shows that hot carriers created by a photon energy considerably larger than the bandgap induce structural distortions at nanocrystal surfaces on few picosecond timescales associated with the localization of trapped holes. On the other hand, carriers created by a photon energy close to the bandgap result in transient lattice heating that occurs on a much longer 200 ps timescale, governed by an Auger heating mechanism. Elucidation of the structural deformations associated with the surface trapping of hot holes provides atomic-scale insights into the mechanisms deteriorating optoelectronic performance and a pathway towards minimizing these losses in nanocrystal devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا