ﻻ يوجد ملخص باللغة العربية
In this note, a criterion for a class of binomials to be permutation polynomials is proposed. As a consequence, many classes of binomial permutation polynomials and monomial complete permutation polynomials are obtained. The exponents in these monomials are of Niho type.
The (generalised) Mellin transforms of certain Chebyshev and Gegenbauer functions based upon the Chebyshev and Gegenbauer polynomials, have polynomial factors $p_n(s)$, whose zeros lie all on the `critical line $Re,s=1/2$ or on the real axis (called
Let $f(X)=X(1+aX^{q(q-1)}+bX^{2(q-1)})inBbb F_{q^2}[X]$, where $a,binBbb F_{q^2}^*$. In a series of recent papers by several authors, sufficient conditions on $a$ and $b$ were found for $f$ to be a permutation polynomial (PP) of $Bbb F_{q^2}$ and, in
Given a permutation polynomial of a large finite field, finding its inverse is usually a hard problem. Based on a piecewise interpolation formula, we construct the inverses of cyclotomic mapping permutation polynomials of arbitrary finite fields.
In this paper, we present three classes of complete permutation monomials over finite fields of odd characteristic. Meanwhile, the compositional inverses of these complete permutation polynomials are also proposed.
Permutation polynomials (PPs) of the form $(x^{q} -x + c)^{frac{q^2 -1}{3}+1} +x$ over $mathbb{F}_{q^2}$ were presented by Li, Helleseth and Tang [Finite Fields Appl. 22 (2013) 16--23]. More recently, we have constructed PPs of the form $(x^{q} +bx +