Phase separation in binary mixtures in the presence of Janus particles has been studied in terms of a Cahn-Hilliard model coupled to the Langevin equations describing the particle dynamics. We demonstrate that the phase separation process is arrested leading to unexpected regular stripe patterns in the concentration field. The underlying pattern forming mechanism has been elucidated: The twofold absorption properties on the surface of Janus particles with respect to the two components of a binary mixture trigger in their neighborhood spatial concentration variations. They result in an effective interaction between the particles mediated by the binary mixture. Our findings open a route to design composite materials with nanoscale lamellar morphologies where the pattern wavelength can be tuned by changing the wetting properties of the Janus particles.