A low-luminosity type-1 QSO sample: I. Overluminous host spheroidals or undermassive black holes?


الملخص بالإنكليزية

Recognizing the properties of the host galaxies of quasi-stellar objects (QSOs) is essential to understand the suspected coevolution of central supermassive black holes (BHs) and their host galaxies. We selected a subsample of the Hamburg/ESO survey for bright UV-excess QSOs, containing only the 99 nearest QSOs with redshift z<=0.06, that are close enough to allow detailed structural analysis. From this low-luminosity type-1 QSO sample, we observed 20 galaxies and performed aperture photometry and bulge-disk-bar-AGN-decomposition with BUDDA on near-infrared J, H, K band images. From the photometric decomposition of these 20 objects and visual inspection of images of another 26, we find that ~50% of the hosts are disk galaxies and most of them (86%) are barred. Stellar masses, calculated from parametric models based on inactive galaxy colors, range from 2x10^9 M_sun to 2x10^11 M_sun. Black hole masses measured from single epoch spectroscopy range from 1x10^6 M_sun to 5x10^8 M_sun. In comparison to higher luminosity QSO samples, LLQSOs tend to have lower stellar and BH masses. Also, in the effective radius vs. mean surface-brightness projection of the fundamental plane, they lie in the transition area between luminous QSOs and normal galaxies. This can be seen as further evidence that they can be pictured as a bridge between the local Seyfert population and luminous QSOs at higher redshift. Eleven low-luminosity QSOs for which we have reliable morphological decompositions and BH mass estimations lie below the published BH mass vs. bulge luminosity relations for inactive galaxies. This could be partially explained by bulges of active galaxies containing much younger stellar populations than bulges of inactive galaxies. Also, one could suspect that their BHs are undermassive. This might hint at the growth of the host spheroid to precede that of the BH.

تحميل البحث