ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability by rescaled weak convergence for the Navier-Stokes equations

130   0   0.0 ( 0 )
 نشر من قبل Isabelle Gallagher
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Hajer Bahouri




اسأل ChatGPT حول البحث

We prove a weak stability result for the three-dimensional homogeneous incompressible Navier-Stokes system. More precisely, we investigate the following problem : if a sequence $(u_{0, n})_{nin N}$ of initial data, bounded in some scaling invariant space, converges weakly to an initial data $u_0$ which generates a global regular solution, does $u_{0, n}$ generate a global regular solution ? A positive answer in general to this question would imply global regularity for any data, through the following examples $u_{0,n} = n vf_0(ncdot)$ or $u_{0,n} = vf_0(cdot-x_n)$ with $|x_n|to infty$. We therefore introduce a new concept of weak convergence (rescaled weak convergence) under which we are able to give a positive answer. The proof relies on profile decompositions in anisotropic spaces and their propagation by the Navier-Stokes equations.



قيم البحث

اقرأ أيضاً

We prove that the energy equality holds for weak solutions of the 3D Navier-Stokes equations in the functional class $L^3([0,T);V^{5/6})$, where $V^{5/6}$ is the domain of the fractional power of the Stokes operator $A^{5/12}$.
In a previous work, we presented a class of initial data to the three dimensional, periodic, incompressible Navier-Stokes equations, generating a global smooth solution although the norm of the initial data may be chosen arbitrarily large. The aim of this article is twofold. First, we adapt the construction to the case of the whole space: we prove that if a certain nonlinear function of the initial data is small enough, in a Koch-Tataru type space, then there is a global solution to the Navier-Stokes equations. We provide an example of initial data satisfying that nonlinear smallness condition, but whose norm is arbitrarily large in $ C^{-1}$. Then we prove a stability result on the nonlinear smallness assumption. More precisely we show that the new smallness assumption also holds for linear superpositions of translated and dilated iterates of the initial data, in the spirit of a construction by the authors and H. Bahouri, thus generating a large number of different examples.
163 - Daoyuan Fang , Chenyin Qian 2012
In this article, we establish sufficient conditions for the regularity of solutions of Navier-Stokes equations based on one of the nine entries of the gradient tensor. We improve the recently results of C.S. Cao, E.S. Titi (Arch. Rational Mech.Anal. 202 (2011) 919-932) and Y. Zhou, M. Pokorn$acute{y}$ (Nonlinearity 23, 1097-1107 (2010)).
The energy equalities of compressible Navier-Stokes equations with general pressure law and degenerate viscosities are studied. By using a unified approach, we give sufficient conditions on the regularity of weak solutions for these equalities to hol d. The method of proof is suitable for the case of periodic as well as homogeneous Dirichlet boundary conditions. In particular, by a careful analysis using the homogeneous Dirichlet boundary condition, no boundary layer assumptions are required when dealing with bounded domains with boundary.
Consider the anisotropic Navier-Stokes equations as well as the primitive equations. It is shown that the horizontal velocity of the solution to the anisotropic Navier-Stokes equations in a cylindrical domain of height $varepsilon $ with initial data $u_0=(v_0,w_0)in B^{2-2/p}_{q,p}$, $1/q+1/ple 1$ if $qge 2$ and $4/3q+2/3ple 1$ if $qle 2$, converges as $varepsilon to 0$ with convergence rate $mathcal{O} (varepsilon )$ to the horizontal velocity of the solution to the primitive equations with initial data $v_0$ with respect to the maximal-$L^p$-$L^q$-regularity norm. Since the difference of the corresponding vertical velocities remains bounded with respect to that norm, the convergence result yields a rigorous justification of the hydrostatic approximation in the primitive equations in this setting. It generalizes in particular a result by Li and Titi for the $L^2$-$L^2$-setting. The approach presented here does not rely on second order energy estimates but on maximal $L^p$-$L^q$-estimates for the heat equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا