ﻻ يوجد ملخص باللغة العربية
An extensive rewiring of cell metabolism supports enhanced proliferation in cancer cells. We propose a systems level approach to describe this phenomenon based on Flux Balance Analysis (FBA). The approach does not explicit a cell biomass formation reaction to be maximized, but takes into account an ensemble of alternative flux distributions that match the cancer metabolic rewiring (CMR) phenotype description. The underlying concept is that the analysis the common/distinguishing properties of the ensemble can provide indications on how CMR is achieved and sustained and thus on how it can be controlled.
Systems Biology is a fundamental field and paradigm that introduces a new era in Biology. The crux of its functionality and usefulness relies on metabolic networks that model the reactions occurring inside an organism and provide the means to underst
Motivation: Genome-wide association studies (GWASs), which assay more than a million single nucleotide polymorphisms (SNPs) in thousands of individuals, have been widely used to identify genetic risk variants for complex diseases. However, most of th
Metapopulations are models of ecological systems, describing the interactions and the behavior of populations that live in fragmented habitats. In this paper, we present a model of metapopulations based on the multivolume simulation algorithm tau-DPP
In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs) of molecules. The results of the simulations performed on ensembles of randomly gener
Over the last few years, several computational techniques have been devised to recover protein complexes from the protein interaction (PPI) networks of organisms. These techniques model dense subnetworks within PPI networks as complexes. However, our