ﻻ يوجد ملخص باللغة العربية
Fast magnetic reconnection events can be a very powerful mechanism operating at the jet launching region of microquasars and AGNs. We have recently found that the power released by reconnection between the magnetic field lines of the coronal inner disk region and the lines anchored into the black hole is able to accelerate relativistic particles through a first-order Fermi process and produce the observed radio luminosity from both microquasars and low luminous AGNs (LLAGNs). We also found that the observed correlation between the radio luminosity and the mass of these sources, spanning 10^9 orders of magnitude in mass, is naturally explained by this process. In this work, assuming that the gamma-ray emission is probably originated in the same acceleration zones that produce the radio emission, we have applied the scenario above to investigate the origin of the high energy outcomes from an extensive number of sources including high (HLAGNs) and LLAGNs, microquasars and GRBs. We find correlation of our model with the gamma emission only for microquasars and a few LLAGNs, while none of the HLAGNs or GRBs are fitted, neither in radio nor in gamma. We attribute the lack of correlation of the gamma emission for most of the LLAGNs to the fact that this processed emission doesnt depend only on the local magnetic field activity around the source/accretion disk, but also on other environmental factors like the photon and density fields. We conclude that the emission from the LLAGNs and microquasars comes from the nuclear region of their sources and therefore, can be driven by nuclear magnetic activity. However, in the case of the HLAGNs and GRBs, the nuclear emission is blocked by the surrounding density and photon fields and therefore, we can only see the jet emission further out.
Fast magnetic reconnection events can be a very powerful mechanism operating in the core region of microquasars and AGNs. In earlier work, it has been suggested that the power released by fast reconnection events between the magnetic field lines lift
We attempt to explain the observed radio and gamma-ray emission produced in the surrounds of black holes by employing a magnetically-dominated accretion flow (MDAF) model and fast magnetic reconnection triggered by turbulence. In earlier work, standa
We propose the particle acceleration model coupled with multiple plasmoid ejections in a solar flare. Unsteady reconnection produces plasmoids in a current sheet and ejects them out to the fast shocks, where particles in a plasmoid are reflected upst
Magnetic reconnection is invoked as one of the primary mechanisms to produce energetic particles. We employ large-scale three-dimensional (3D) particle-in-cell simulations of reconnection in magnetically-dominated ($sigma=10$) pair plasmas to study t
It is believed that the hard X-ray emission in the luminous active galactic nuclei (AGNs) is from the hot corona above the cool accretion disk. However, the formation of the corona is still debated. Liu et al. investigated the spectrum of the corona