ترغب بنشر مسار تعليمي؟ اضغط هنا

To Stack or Not to Stack: Spectral Energy Distribution Properties of Lya-Emitting Galaxies at z=2.1

109   0   0.0 ( 0 )
 نشر من قبل Carlos Vargas
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) GOODS-S multi-wavelength catalog to identify counterparts for 20 Lya Emitting (LAE) galaxies at z=2.1. We build several types of stacked Spectral Energy Distributions (SEDs) of these objects. We combine photometry to form average and median flux-stacked SEDs, and postage stamp images to form average and median image-stacked SEDs. We also introduce scaled flux stacks that eliminate the influence of variation in overall brightness. We use the SED fitting code SpeedyMC to constrain the physical properties of individual objects and stacks. Our LAEs at z = 2.1 have stellar masses ranging from 2x10^7 Msun - 8x10^9 Msun (median = 3x10^8 Msun), ages ranging from 4 Myr to 500 Myr (median =100 Myr), and E(B-V) between 0.02 and 0.24 (median = 0.12). We do not observe strong correlations between Lya equivalent width (EW) and stellar mass, age, or E(B-V). The Lya radiative transfer (q) factors of our sample are predominantly close to one and do not correlate strongly with EW or E(B-V), implying that Lya radiative transfer prevents Lya photons from resonantly scattering in dusty regions. The SED parameters of the flux stacks match the average and median values of the individual objects, with the flux-scaled median SED performing best with reduced uncertainties. Median image-stacked SEDs provide a poor representation of the median individual object, and none of the stacking methods captures the large dispersion of LAE properties.



قيم البحث

اقرأ أيضاً

We study the physical properties of 216 z ~ 2.1 LAEs discovered in an ultra-deep narrow-band MUSYC image of the ECDF-S. We fit their stacked Spectral Energy Distribution (SED) using Charlot & Bruzual templates. We consider star formation histories pa rametrized by the e-folding time parameter tau, allowing for exponentially decreasing (tau>0), exponentially increasing (tau<0), and constant star formation rates. These LAEs are characterized by best fit parameters and 68% confidence intervals of log(M_*/M_sun)=8.6[8.4-9.1], E(B-V)=0.22[0.00-0.31], tau=-0.02[(-4)-18] Gyr, and age_ SF=0.018[0.009-3] Gyr. Thus, we obtain robust measurements of low stellar mass and dust content, but we cannot place meaningful constraints on the age or star formation history of the LAEs. We also calculate the instantaneous SFR to be 35[0.003-170] M_sun/yr, with its average over the last 100 Myr before observation giving <SFR>_100=4[2-30] M_sun/yr. When we compare the results for the same star formation history, LAEs at z~2.1 are dustier and show higher instantaneous SFRs than z~3.1 LAEs, while the observed stellar masses of the two samples seem consistent. LAEs appear to occupy the low-mass end of the distribution of star forming galaxies at z~2. We perform SED fitting on several sub-samples selected based on photometric properties and find that LAE sub-samples at z~2.1 exhibit heterogeneous properties. The IRAC-bright, UV-bright and red LAEs have the largest stellar mass and dust reddening. The UV-faint, IRAC-faint, and high equivalent width LAE sub-samples appear less massive (<10^9 M_sun) and less dusty, with E(B-V) consistent with zero.
We present a rest-frame ultraviolet morphological analysis of 108 z=2.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South (ECDF-S) and compare it to a similar sample of 171 LAEs at z=3.1. Using Hubble Space Telescope (HST) images f rom the Galaxy Evolution from Morphology and SEDs survey, Great Observatories Origins Deep Survey, and Hubble Ultradeep Field, we measure size and photometric component distributions, where photometric components are defined as distinct clumps of UV-continuum emission. At both redshifts, the majority of LAEs have observed half-light radii <~ 2 kpc, but the median half-light radius rises from 1.0 kpc at z=3.1 to 1.4 kpc at z=2.1. A similar evolution is seen in the sizes of individual rest-UV components, but there is no evidence for evolution in the number of multi-component systems. In the z=2.1 sample, we see clear correlations between the size of an LAE and other physical properties derived from its SED. LAEs are found to be larger for galaxies with higher stellar mass, star formation rate, and dust obscuration, but there is no evidence for a trend between equivalent width and half-light radius at either redshift. The presence of these correlations suggests that a wide range of objects are being selected by LAE surveys at z~2, including a significant fraction of objects for which a massive and moderately extended population of old stars underlies the young starburst giving rise to the Lyman alpha emission.
We describe the results of a new, wide-field survey for z=3.1 Ly-alpha emission-line galaxies (LAEs) in the Extended Chandra Deep Field South (ECDF-S). By using a nearly top-hat 5010 Angstrom filter and complementary broadband photometry from the MUS YC survey, we identify a complete sample of 141 objects with monochromatic fluxes brighter than 2.4E-17 ergs/cm^2/s and observers-frame equivalent widths greater than ~ 80 Angstroms (i.e., 20 Angstroms in the rest-frame of Ly-alpha). The bright-end of this dataset is dominated by x-ray sources and foreground objects with GALEX detections, but when these interlopers are removed, we are still left with a sample of 130 LAE candidates, 39 of which have spectroscopic confirmations. This sample overlaps the set of objects found in an earlier ECDF-S survey, but due to our filters redder bandpass, it also includes 68 previously uncataloged sources. We confirm earlier measurements of the z=3.1 LAE emission-line luminosity function, and show that an apparent anti-correlation between equivalent width and continuum brightness is likely due to the effect of correlated errors in our heteroskedastic dataset. Finally, we compare the properties of z=3.1 LAEs to LAEs found at z=2.1. We show that in the ~1 Gyr after z~3, the LAE luminosity function evolved significantly, with L* fading by ~0.4 mag, the number density of sources with L > 1.5E42 ergs/s declining by ~50%, and the equivalent width scale-length contracting from 70^{+7}_{-5} Angstroms to 50^{+9}_{-6} Angstroms. When combined with literature results, our observations demonstrate that over the redshift range z~0 to z~4, LAEs contain less than ~10% of the star-formation rate density of the universe.
We discovered a sample of 250 Ly-Alpha emitting (LAE) galaxies at z=2.1 in an ultra-deep 3727 A narrow-band MUSYC image of the Extended Chandra Deep Field-South. LAEs were selected to have rest-frame equivalent widths (EW) > 20 A and emission line fl uxes > 2.0 x 10^(-17)erg /cm^2/s, after carefully subtracting the continuum contributions from narrow band photometry. The median flux of our sample is 4.2 x 10^(-17)erg/cm^2/s, corresponding to a median Lya luminosity = 1.3 x 10^(42) erg/s at z=2.1. At this flux our sample is > 90% complete. Approximately 4% of the original NB-selected candidates were detected in X-rays by Chandra, and 7% were detected in the rest-frame far-UV by GALEX. At luminosity>1.3 x 10^42 erg/s, the equivalent width distribution is unbiased and is represented by an exponential with scale-length of 83+/-10 A. Above this same luminosity threshold, we find a number density of 1.5+/-0.5 x 10^-3 Mpc^-3. Neither the number density of LAEs nor the scale-length of their EW distribution show significant evolution from z=3 to z=2. We used the rest frame UV luminosity to estimate a median star formation rate of 4 M_(sun) /yr. The median rest frame UV slope, parametrized by B-R, is that typical of dust-free, 0.5-1 Gyr old or moderately dusty, 300-500 Myr old populations. Approximately 40% of the sample occupies the z~2 star-forming galaxy locus in the UVR two color diagram. Clustering analysis reveals that LAEs at z=2.1 have r_0=4.8+/-0.9 Mpc and a bias factor b=1.8+/-0.3. This implies that z=2.1 LAEs reside in dark matter halos with median masses Log(M/M_(sun))=11.5^(+0.4)_(-0.5), which are among of the lowest-mass halos yet probed at this redshift. We used the Sheth-Tormen conditional mass function to study the descendants of these LAEs and found that their typical present-day descendants are local galaxies with L* properties, like the Milky Way.
We perform a quantitative morphological comparison between the hosts of Active Galactic Nuclei (AGN) and quiescent galaxies at intermediate redshifts (z~0.7). The imaging data are taken from the large HST/ACS mosaics of the GEMS and STAGES surveys. O ur main aim is to test whether nuclear activity at this cosmic epoch is triggered by major mergers. Using images of quiescent galaxies and stars, we create synthetic AGN images to investigate the impact of an optical nucleus on the morphological analysis of AGN hosts. Galaxy morphologies are parameterized using the asymmetry index A, concentration index C, Gini coefficient G and M20 index. A sample of ~200 synthetic AGN is matched to 21 real AGN in terms of redshift, host brightness and host-to-nucleus ratio to ensure a reliable comparison between active and quiescent galaxies. The optical nuclei strongly affect the morphological parameters of the underlying host galaxy. Taking these effects into account, we find that the morphologies of the AGN hosts are clearly distinct from galaxies undergoing violent gravitational interactions. In fact, the host galaxies distributions in morphological descriptor space are more similar to undisturbed galaxies than major mergers. Intermediate-luminosity (Lx < 10^44 erg/s) AGN hosts at z~0.7 show morphologies similar to the general population of massive galaxies with significant bulges at the same redshifts. If major mergers are the driver of nuclear activity at this epoch, the signatures of gravitational interactions fade rapidly before the optical AGN phase starts, making them undetectable on single-orbit HST images, at least with usual morphological descriptors. This could be investigated in future synthetic observations created from numerical simulations of galaxy-galaxy interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا