ترغب بنشر مسار تعليمي؟ اضغط هنا

Lunar Eclipse Observations Reveal Anomalous Thermal Performance of Apollo Reflectors

123   0   0.0 ( 0 )
 نشر من قبل Thomas Murphy Jr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Laser ranging measurements during the total lunar eclipse on 2010 December 21 verify previously suspected thermal lensing in the retroreflectors left on the lunar surface by the Apollo astronauts. Signal levels during the eclipse far exceeded those historically seen at full moon, and varied over an order of magnitude as the eclipse progressed. These variations can be understood via a straightforward thermal scenario involving solar absorption by a ~50% covering of dust that has accumulated on the front surfaces of the reflectors. The same mechanism can explain the long-term degradation of signal from the reflectors as well as the acute signal deficit observed near full moon.



قيم البحث

اقرأ أيضاً

131 - Enric Palle 2009
Of the 342 planets discovered so far orbiting other stars, 58 transit the stellar disk, meaning that they can be detected by a periodic decrease in the starlight flux. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration toward the characterization of exoplanetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflected spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the fingerprints of the Earths ionosphere and of the major atmospheric constituent, diatomic nitrogen (N2), which are missing in the reflected spectrum.
Observations of the Earthshine off the Moon allow for the unique opportunity to measure the large-scale Earth atmosphere. Another opportunity is realized during a total lunar eclipse which, if seen from the Moon, is like a transit of the Earth in fro nt of the Sun. We thus aim at transmission spectroscopy of an Earth transit by tracing the solar spectrum during the total lunar eclipse of January 21, 2019. Time series spectra of the Tycho crater were taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in its polarimetric mode in Stokes IQUV at a spectral resolution of 130000 (0.06 AA). In particular, the spectra cover the red parts of the optical spectrum between 7419-9067 AA . The spectrographs exposure meter was used to obtain a light curve of the lunar eclipse. The brightness of the Moon dimmed by 10.75 mag during umbral eclipse. We found both branches of the O$_2$ A-band almost completely saturated as well as a strong increase of H$_2$O absorption during totality. The deep penumbral spectra show significant excess absorption from the NaI 5890 AA doublet, the CaII infrared triplet around 8600 AA, and the KI line at 7699 AA in addition to several hyper-fine-structure lines of MnI and even from BaII. The detections of the latter two elements are likely due to an untypical solar center-to-limb effect rather than Earths atmosphere. The absorption in CaII and KI remained visible throughout umbral eclipse. A small continuum polarization of the O$_2$ A-band of 0.12% during umbral eclipse was detected at 6.3$sigma$. No line polarization of the O$_2$ A-band, or any other spectral-line feature, is detected outside nor inside eclipse. It places an upper limit of $approx$0.2% on the degree of line polarization during transmission through Earths atmosphere and magnetosphere.
We discuss here a lunar impact flash recorded during the total lunar eclipse that occurred on 2019 January 21, at 4h 41m 38.09 +- 0.01 s UT. This is the first time ever that an impact flash is unambiguously recorded during a lunar eclipse and discuss ed in the scientific literature, and the first time that lunar impact flash observations in more than two wavelengths are reported. The impact event was observed by different instruments in the framework of the MIDAS survey. It was also spotted by casual observers that were taking images of the eclipse. The flash lasted 0.28 seconds and its peak luminosity in visible band was equivalent to the brightness of a mag. 4.2 star. The projectile hit the Moon at the coordinates 29.2 +- 0.3 $^{circ}$S, 67.5 +- 0.4 $^{circ}$W. In this work we have investigated the most likely source of the projectile, and the diameter of the new crater generated by the collision has been calculated. In addition, the temperature of the lunar impact flash is derived from the multiwavelength observations. These indicate that the blackbody temperature of this flash was of about 5700 K.
Grating reflectors have been repeatedly discussed to improve the noise performance of metrological applications due to the reduction or absence of any coating material. So far, however, no quantitative estimate on the thermal noise of these reflectiv e structures exists. In this work we present a theoretical calculation of a grating reflectors noise. We further apply it to a proposed 3rd generation gravitational wave detector. Depending on the grating geometry, the grating material and the temperature we obtain a thermal noise decrease by up to a factor of ten compared to conventional dielectric mirrors. Thus the use of grating reflectors can substantially improve the noise performance in metrological applications.
102 - E. Rauscher , V. Suri , 2018
Only one exoplanet has so far been mapped in both longitude and latitude, but the James Webb Space Telescope should provide mapping-quality data for dozens of exoplanets. The thermal phase mapping problem has previously been solved analytically, with orthogonal maps---spherical harmonics---yielding orthogonal lightcurves---sinusoids. The eclipse mapping problem, let alone combined phase+eclipse mapping, does not lend itself to such a neat solution. Previous efforts have either adopted spherical harmonics, or various ad hoc map parameterizations, none of which produce orthogonal lightcurves. We use principal component analysis to construct orthogonal eigencurves, which we then use to fit published 8 micron observations of the hot Jupiter HD 189733b. This approach has a few advantages over previously used techniques: 1) the lightcurves can be pre-computed, accelerating the fitting process, 2) the eigencurves are orthogonal to each other, reducing parameter correlations, and 3) the eigencurves are model-independent and are ranked in order of sensitivity. One notable result of our analysis is that eclipse-only mapping of HD 189733b is far more sensitive to the central concentration of dayside flux than to the eastward offset of that hotspot. Mapping can, in principle, suffer from degeneracies between spatial patterns and orbital parameters. Previous mapping efforts using these data have either assumed a circular orbit and precise inclination, or have been pessimistic about the prospects of eclipse mapping in the face of uncertain orbital parameters. We show that for HD 189733b the combined photometry and radial velocity are sufficiently precise to retire this concern. Lastly, we present the first map of brightness temperature, and we quantify the amplitude and longitude offset of the dayside hotspot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا