Control of ferromagnetism by manipulating the carrier wavefunction in ferromagnetic semiconductor (In,Fe)As quantum wells


الملخص بالإنكليزية

We demonstrated the control of ferromagnetism in a surface quantum well containing a 5-nm-thick n-type ferromagnetic semiconductor (In,Fe)As layer sandwiched between two InAs layers, by manipulating the carrier wavefunction. The Curie temperature (Tc) of the (In,Fe)As layer was effectively changed by up to 12 K ({Delta}Tc/Tc = 55%). Our calculation using the mean-field Zener theory reveals an unexpectedly large s-d exchange interaction in (In,Fe)As. Our results establish an effective way to control the ferromagnetism in quantum heterostructures of n-type FMSs, as well as require reconsideration on the current understanding of the s-d exchange interaction in narrow gap FMSs.

تحميل البحث