ﻻ يوجد ملخص باللغة العربية
At the distance of 99-116 pc, HD141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. We observed the fine-structure lines of OI at 63 and 145 micron and the CII line at 157 micron with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large programme GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 micron, and 12CO fundamental ro-vibrational and pure rotational J=3-2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. The models suggest that the oxygen lines are emitted from the inner disk around HD141569A, whereas the [CII] line emission is more extended. The CO submillimeter flux is emitted mostly by the outer disk. Simultaneous modeling of the photometric and line data using a realistic disk structure suggests a dust mass derived from grains with a radius smaller than 1 mm of 2.1E-7 MSun and from grains with a radius of up to 1 cm of 4.9E-6 MSun. We constrained the polycyclic aromatic hydrocarbons (PAH) mass to be between 2E-11 and 1..4E-10 MSun assuming circumcircumcoronene (C150H30) as the representative PAH. The associated PAH abundance relative to hydrogen is lower than those found in the interstellar medium (3E-7) by two to three orders of magnitude. The disk around HD141569A is less massive in gas (2.5 to 4.9E-4 MSun or 67 to 164 MEarth) and has a flat opening angle (<10%). [abridged]
We present Herschel PACS spectroscopy of the [OI] 63 micron gas-line for three circumstellar disk systems showing signs of significant disk evolution and/or planet formation: HR 8799, HD 377 and RX J1852.3-3700. [OI] is undetected toward HR 8799 and
Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, makin
The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO
We present emph{Herschel} PACS observations of 8 Classical T Tauri Stars in the $sim 7-10$ Myr old OB1a and the $sim 4-5$ Myr old OB1b Orion sub-asscociations. Detailed modeling of the broadband spectral energy distributions, particularly the strong
We present Cloudy calculations for the intensity of coronal hyperfine lines in various environments. We model indirect collisional and radiative transitions, and quantify the collisionally-excited line emissivity in the density-temperature phase-spac