ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Connection between the R_{II} Chain and the Nonautonomous Discrete Modified KdV Lattice

105   0   0.0 ( 0 )
 نشر من قبل Kazuki Maeda
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spectral transformation technique for symmetric R_{II} polynomials is developed. Use of this technique reveals that the nonautonomous discrete modified KdV (nd-mKdV) lattice is directly connected with the R_{II} chain. Hankel determinant solutions to the semi-infinite nd-mKdV lattice are also presented.



قيم البحث

اقرأ أيضاً

77 - Kazuki Maeda 2017
A nonautonomous version of the ultradiscrete hungry Toda lattice with a finite lattice boundary condition is derived by applying reduction and ultradiscretization to a nonautonomous two-dimensional discrete Toda lattice. It is shown that the derived ultradiscrete system has a direct connection to the box-ball system with many kinds of balls and finite carrier capacity. Particular solutions to the ultradiscrete system are constructed by using the theory of some sort of discrete biorthogonal polynomials.
225 - Liming Ling , Xuan Sun 2021
We study the spectral (linear) stability and orbital (nonlinear) stability of the elliptic solutions for the focusing modified Korteweg-de Vries (mKdV) equation with respect to subharmonic perturbations and construct the corresponding breather soluti ons to exhibit the unstable or stable dynamic behavior. The elliptic function solutions of mKdV equation and the fundamental solutions of Lax pair are exactly represented by using the theta function. Based on the `modified squared wavefunction (MSW) method, we construct all linear independent solutions of the linearized KdV equation, and then provide a necessary and sufficient condition of the spectral stability for the elliptic function solutions with respect to subharmonic perturbations. In the case of spectrum stable, the orbital stability of the elliptic function solutions with respect to subharmonic perturbations is established under a suitable Hilbert space. Using Darboux-Backlund transformation, we construct the breather solutions to exhibit the unstable or stable dynamic behavior. Through analyzing the asymptotical behavior, we find the breather solution under the $mathrm{cn}$-background is equivalent to the elliptic function solution adding a small perturbation as $ttopminfty$.
97 - Jun-xiao Zhao 2010
In the system made of Korteweg-de Vries with one source, we first show by applying the Painleve test that the two components of the source must have the same potential. We then explain the natural introduction of an additional term in the potential o f the source equations while preserving the existence of a Lax pair. This allows us to prove the identity between the travelling wave reduction and one of the three integrable cases of the cubic Henon-Heiles Hamiltonian system.
77 - Takayuki Tsuchida 2018
We propose a new integrable generalization of the Toda lattice wherein the original Flaschka-Manakov variables are coupled to newly introduced dependent variables; the general case wherein the additional dependent variables are vector-valued is consi dered. This generalization admits a Lax pair based on an extension of the Jacobi operator, an infinite number of conservation laws and, in a special case, a simple Hamiltonian structure. In fact, the second flow of this generalized Toda hierarchy reduces to the usual Toda lattice when the additional dependent variables vanish; the first flow of the hierarchy reduces to a long wave-short wave interaction model, known as the Yajima-Oikawa system, in a suitable continuous limit. This integrable discretization of the Yajima-Oikawa system is essentially different from the discrete Yajima-Oikawa system proposed in arXiv:1509.06996 (also see https://link.aps.org/doi/10.1103/PhysRevE.91.062902) and studied in arXiv:1804.10224. Two integrable discretizations of the nonlinear Schrodinger hierarchy, the Ablowitz-Ladik hierarchy and the Konopelchenko-Chudnovsky hierarchy, are contained in the generalized Toda hierarchy as special cases.
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/el liptic $N$-soliton solutions for higher order KdV equations is the same as that of the original KdV equation. Pointing out that the difference is only the time dependence, we find $N$-soliton solutions of higher order KdV equations can be constructed from those of the original KdV equation by properly replacing the time-dependence. We discuss that there always exist elliptic solutions for all higher order KdV equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا