ﻻ يوجد ملخص باللغة العربية
Structures like galaxies and filaments of galaxies in the Universe come about from the origami-like folding of an initially flat three-dimensional manifold in 6D phase space. The ORIGAMI method identifies these structures in a cosmological simulation, delineating the structures according to their outer folds. Structure identification is a crucial step in comparing cosmological simulations to observed maps of the Universe. The ORIGAMI definition is objective, dynamical and geometric: filament, wall and void particles are classified according to the number of orthogonal axes along which dark-matter streams have crossed. Here, we briefly review these ideas, and speculate on how ORIGAMI might be useful to find cosmic voids.
We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIG
For over twenty years, the term cosmic web has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the c
The cosmic web (the arrangement of matter in the universe), spiders webs, and origami tessellations are linked by their geometry (specifically, of sectional-Voronoi tessellations). This motivates origami and textile artistic representations of the co
Many low-frequency radio interferometers are aiming to detect very faint spectral signatures from structures at cosmological redshifts, particularly of neutral Hydrogen using its characteristic 21 cm spectral line. Due to the very high dynamic range
Signatures of the processes in the early Universe are imprinted in the cosmic web. Some of them may define shell-like structures characterised by typical scales. We search for shell-like structures in the distribution of nearby rich clusters of galax