ترغب بنشر مسار تعليمي؟ اضغط هنا

Divisors on Burniat surfaces

215   0   0.0 ( 0 )
 نشر من قبل Valery Alexeev
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Valery Alexeev




اسأل ChatGPT حول البحث

In this short note, we extend the results of [Alexeev-Orlov, 2012] about Picard groups of Burniat surfaces with $K^2=6$ to the cases of $2le K^2le 5$. We also compute the semigroup of effective divisors on Burniat surfaces with $K^2=6$. Finally, we construct an exceptional collection on a nonnormal semistable degeneration of a 1-parameter family of Burniat surfaces with $K^2=6$.



قيم البحث

اقرأ أيضاً

We construct an exceptional collection $Upsilon$ of maximal possible length 6 on any of the Burniat surfaces with $K_X^2=6$, a 4-dimensional family of surfaces of general type with $p_g=q=0$. We also calculate the DG algebra of endomorphisms of this collection and show that the subcategory generated by this collection is the same for all Burniat surfaces. The semiorthogonal complement $mathcal A$ of $Upsilon$ is an almost phantom category: it has trivial Hochschild homology, and $K_0(mathcal A)=bZ_2^6$.
98 - Jingjun Han , Yujie Luo 2020
Let $Gamma$ be a finite set, and $X i x$ a fixed klt germ. For any lc germ $(X i x,B:=sum_{i} b_iB_i)$ such that $b_iin Gamma$, Nakamuras conjecture, which is equivalent to the ACC conjecture for minimal log discrepancies for fixed germs, predicts th at there always exists a prime divisor $E$ over $X i x$, such that $a(E,X,B)={rm{mld}}(X i x,B)$, and $a(E,X,0)$ is bounded from above. We extend Nakamuras conjecture to the setting that $X i x$ is not necessarily fixed and $Gamma$ satisfies the DCC, and show it holds for surfaces. We also find some sufficient conditions for the boundedness of $a(E,X,0)$ for any such $E$.
We describe a sequence of effective divisors on the Hurwitz space $H_{d,g}$ for $d$ dividing $g-1$ and compute their cycle classes on a partial compactification. These divisors arise from vector bundles of syzygies canonically associated to a branche d cover. We find that the cycle classes are all proportional to each other.
In this paper, we prove the ampleness conjecture and Serranos conjecture for strictly nef divisors on K-trivial fourfolds. Specifically, we show that any strictly nef divisors on projective fourfolds with trivial canonical bundle and vanishing irregularity are ample.
159 - Qi Zhang 2004
We prove a structure theorem for projective varieties with nef anticanonical divisors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا