ترغب بنشر مسار تعليمي؟ اضغط هنا

CoRoT target HD 51844: a delta Scuti star in a binary system with periastron brightening

302   0   0.0 ( 0 )
 نشر من قبل Markus Hareter
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The star HD 51844 was observed in CoRoT LRa02 as a Seismo target which turned out to be an SB2 system. The 117 days long light curve revealed delta Scuti pulsation in the range of 6 to 15 d^{-1} where four frequencies have amplitudes larger than 1.4 mmag and a rich frequency spectrum with amplitudes lower than 0.6 mmag. Additionally, the light curve exhibits a brightening event recurring every 33.5 days with a maximum of 3 mmag and a duration of about 5 days. Thus, this star can be considered as a heartbeat candidate. The radial velocities from spectroscopy confirmed an eccentric binary system with nearly identical masses and physical parameters. The brightening event of the light curve coincides with the maximum radial velocity separation showing that the brightening is in fact caused by tidal distortion and/or reflected light. One component displays large line profile variations, while the other does not show significant variation. The frequency analysis revealed a quintuplet structure of the four highest-amplitude frequencies, which is due to the orbital motion of the pulsating star.



قيم البحث

اقرأ أيضاً

Pulsating stars in binary systems are ideal laboratories to test stellar evolution and pulsation theory, since a direct, model-independent determination of component masses is possible. The high-precision CoRoT photometry allows a detailed view of th e frequency content of pulsating stars, enabling detection of patterns in their distribution. The object HD 51844 is such a case showing periastron brightening instead of eclipses. We present a comprehensive study of the HD 51844 system, where we derive physical parameters of both components, the pulsation content and frequency patterns. Additionally, we obtain the orbital elements, including masses, and the chemical composition of the stars. Time series analysis using standard tools was mployed to extract the pulsation frequencies. Photospheric abundances of 21 chemical elements were derived by means of spectrum synthesis. We derived orbital elements both by fitting the observed radial velocities and the light curves, and we did asteroseismic modelling as well. We found that HD 51844 is a double lined spectroscopic binary. The determined abundances are consistent with delta Delphini classification. We determined the orbital period (33.498 +- 0.002 d), the eccentricity (0.484 +- 0.020), the mass ratio (0.988 +- 0.02), and the masses to 2.0 +- 0.2 M_sun for both components. Only one component showed pulsation. Two p modes (f_22 and f_36) and one g mode (f_orb) may be tidally excited. Among the 115 frequencies, we detected triplets due to the frequency modulation, frequency differences connected to the orbital period, and unexpected resonances (3:2, 3:5, and 3:4), which is a new discovery for a delta Scuti star.
Eclipsing binary systems with pulsating components allow the determination of several physical parameters of the stars, such as mass and radius, that, when combined with the pulsation properties, can be used to constrain the modeling of stellar inter iors and evolution. Hereby, we present the results of the study of CoRoT 105906206, an eclipsing binary system with a pulsating component located in the CoRoT LRc02 field. The analysis of the CoRoT light curve was complemented by high-resolution spectra from the Sandiford at McDonald Observatory and FEROS at ESO spectrographs, which revealed a double-lined spectroscopic binary. We used an iterative procedure to separate the pulsation-induced photometric variations from the eclipse signals. First, a Fourier analysis was used to identify the significant frequencies and amplitudes due to pulsations. Second, after removing the contribution of the pulsations from the light curve we applied the PIKAIA genetic-algorithm approach to derive the best parameters that describe the orbital properties of the system. The light curve cleaned for pulsations contains the partial eclipse of the primary and the total eclipse of the secondary. The system has an orbital period of about 3.694 days and is formed by a primary star with mass M1 = 2.25 +/- 0.04 solar masses, radius R1 = 4.24 +/- 0.02 solar radii, and effective temperature Teff1 = 6750 +/- 150 K, and a secondary with M2 = 1.29 +/- 0.03 solar masses, R2 = 1.34 +/- 0.01 solar radii, and Teff2 = 6152 +/- 162 K. The best solution for the parameters was obtained by taking into account the asymmetric modulation observed in the light curve, known as the OConnell effect, presumably caused by Doppler beaming. The analysis of the Fourier spectrum revealed that the primary component has p-mode pulsations in the range 5-13 c/d, which are typical of Delta Scuti type stars.
In this work, we have gone one step further from the study presented in the first CoRoT symposium. Our analysis consists on constructing a model database covering the entire uncertainty box of the $delta$ Sct star HD174966, derived from the usual obs ervables ($mathrm{T}_{mathrm{eff}}$, $log g$ and [Fe/H]), and constraining the models representative of the star. To do that, we use the value of the periodicity (related to $Delta u_{ell}$) found in its CoRoT pulsating spectrum.
The high accuracy of space data increased the number of the periodicities determined for pulsating variable stars, but the mode identification is still a critical point in the non-asymptotic regime. We use regularities in frequency spacings for ident ifying the pulsation modes of the recently discovered delta Sct star ID 102749568. In addition to analysing CoRoT light curves (15252 datapoints spanning 131 days), we obtained and analysed both spectroscopic and extended multi-colour photometric data. We applied standard tools (MUFRAN, Period04, SigSpec, and FAMIAS) for time-series analysis. A satisfactory light-curve fit was obtaining by means of 52 independent modes and 15 combination terms. The frequency spacing revealed distinct peaks around large (25.55-31.43 microHz), intermediate (9.80, 7.66 microHz), and low (2.35 microHz) separations. We directly identified 9 modes, and the l and n values of other three modes were extrapolated. The combined application of spectroscopy, multi-colour photometry, and modelling yielded the precise physical parameters and confirmed the observational mode identification. The large separation constrained the log g and related quantities. The dominant mode is the radial first overtone.
Eclipsing binaries with a $delta$ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of 6 primary $delta$ Sct components in eclipsing binaries has been per formed. Values of $T_{rm eff}$, $v sin i$, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of $delta$ Sct stars in eclipsing binaries is presented. In this list, we have only given the $delta$ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary $delta$ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g., mass, radius) of 92 $delta$ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member $delta$ Sct stars has been made. We find that single $delta$ Sct stars pulsate in longer periods and with higher amplitudes than the primary $delta$ Sct components in eclipsing binaries. The $v sin i$ of $delta$ Sct components is found to be significantly lower than that of single $delta$ Sct stars. Relationships between the pulsation periods, amplitudes, and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, $T_{rm eff}$, $log g$, radius, mass ratio, $v sin i$, and the filling factor have been found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا