ﻻ يوجد ملخص باللغة العربية
Recent work on Ultra Long Period Cepheids (ULPCs) has suggested their usefulness as a distance indicator, but has not commented on their relationship as compared with other types of variable stars. In this work, we use Fourier analysis to quantify the structure of ULPC light curves and compare them to Classical Cepheids and Mira variables. Our preliminary results suggest that the low order Fourier parameters of ULPCs show a continuous trend defined by Classical Cepheids after the resonance around 10 days. However their Fourier parameters also overlapped with those from Miras, which make the classification of long period variable stars difficult based on the light curves information alone.
The development of surveys which will be able to cover a large region of the sky several times per year will allow the massive detection of transient events taking place in timescales of years. In addition, the projected full digitalization of the Ha
We have modified the graphical user interfaced close binary system analysis program CurveFit to the form WinKepler and applied it to 16 representative planetary candidate light curves found in the NASA Exoplanet Archive (NEA) at the Caltech website h
With growing data from ongoing and future supernova surveys it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such
We present the first analysis of results from the SuperWASP Variable Stars Zooniverse project, which is aiming to classify 1.6 million phase-folded light curves of candidate stellar variables observed by the SuperWASP all sky survey with periods dete
We have identified some two-hundred new variable stars in a systematic study of a data archive obtained with the Calvin-Rehoboth observatory. Of these, we present five close binaries showing behaviors presumably due to star spots or other magnetic ac