We use natural seeing imaging of SN 2013ej in M74 to identify a progenitor candidate in archival {it Hubble Space Telescope} + ACS images. We find a source coincident with the SN in the {it F814W}-filter, however the position of the progenitor candidate in contemporaneous {it F435W} and {it F555W}-filters is significantly offset. We conclude that the progenitor candidate is in fact two physically unrelated sources; a blue source which is likely unrelated to the SN, and a red source which we suggest exploded as SN 2013ej. Deep images with the same instrument onboard {it HST} taken when the supernova has faded (in approximately two years time) will allow us to accurately characterise the unrelated neighbouring source and hence determine the intrinsic flux of the progenitor in three filters. We suggest that the {it F814W} flux is dominated by the progenitor of SN 2013ej, and assuming a bolometric correction appropriate to an M-type supergiant, we estimate that the mass of the progenitor of SN 2013ej was between 8 -- 15.5 M$_{odot}$.