ﻻ يوجد ملخص باللغة العربية
We present the development of high-performance polarized $^3mathrm{He}$ targets for use in electron scattering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We include data obtained during the characterization of 24 separate target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. The results presented here document dramatic improvement in the performance of polarized $^3mathrm{He}$ targets, as well as the target properties and operating parameters that made those improvements possible. Included in our measurements were determinations of the so-called $X$-factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable $^3mathrm{He}$ polarization to well under 100%. The presence of this spin-relaxation mechanism was clearly evident in our data. We also present results from a simulation of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance in the design of these targets. Good agreement with actual performance was obtained by including details such as off-resonant optical pumping. Now benchmarked against experimental data, the simulation is useful for the design of future targets. Included in our results is a measurement of the $mathrm{K}$-$^3mathrm{He}$ spin-exchange rate coefficient $k^mathrm{K}_mathrm{se} = left ( 7.46 pm 0.62 right )!times!10^{-20} mathrm{cm^3/s}$ over the temperature range 503 K to 563 K.
The dynamics of the movement of gas is discussed for two-chambered polarized He-3 target cells of the sort that have been used successfully for many electron scattering experiments. A detailed analysis is presented showing that diffusion is a limitin
We present the conceptual design of a polarized $^3$He target to be used for high luminosity scattering experiments within high magnetic field environments. This two-cell target will take advantage of advancements in optical pumping techniques at hig
This article reviews the physics and technology of producing large quantities of highly spin-polarized, or hyperpolarized, $^3$He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping, and surveys applications of polariz
Atomic Parity Violation (APV) is usually quantified in terms of the weak nuclear charge $Q_W$ of a nucleus, which depends on the coupling strength between the atomic electrons and quarks. In this work, we review the importance of APV to probing new p
Theoretical predictions for elastic neutrino-electron scattering have no hadronic or nuclear uncertainties at leading order making this process an important tool for normalizing neutrino flux. However, the process is subject to large radiative correc