ترغب بنشر مسار تعليمي؟ اضغط هنا

CHIRON - A Fiber Fed Spectrometer for Precise Radial Velocities

189   0   0.0 ( 0 )
 نشر من قبل Andrei Tokovinin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The CHIRON optical high-resolution echelle spectrometer was commissioned at the 1.5m telescope at CTIO in 2011. The instrument was designed for high throughput and stability, with the goal of monitoring radial velocities of bright stars with high precision and high cadence for the discovery of low-mass exoplanets. Spectral resolution of R=79,000 is attained when using a slicer with a total (including telescope and detector) efficiency of 6% or higher, while a resolution of R=136,000 is available for bright stars. A fixed spectral range of 415 to 880 nm is covered. The echelle grating is housed in a vacuum enclosure and the instrument temperature is stabilized to +-0.2deg. Stable illumination is provided by an octagonal multimode fiber with excellent light-scrambling properties. An iodine cell is used for wavelength calibration. We describe the main optics, fiber feed, detector, exposure-meter, and other aspects of the instrument, as well as the observing procedure and data reduction.



قيم البحث

اقرأ أيضاً

High fidelity iodine spectra provide the wavelength and instrument calibration needed to extract precise radial velocities (RVs) from stellar spectral observations taken through iodine cells. Such iodine spectra are usually taken by a Fourier Transfo rm Spectrometer (FTS). In this work, we investigated the reason behind the discrepancy between two FTS spectra of the iodine cell used for precise RV work with the High Resolution Spectrograph (HRS) at the Hobby-Eberly Telescope. We concluded that the discrepancy between the two HRS FTS spectra was due to temperature changes of the iodine cell. Our work demonstrated that the ultra-high resolution spectra taken by the TS12 arm of the Tull Spectrograph One at McDonald Observatory are of similar quality to the FTS spectra and thus can be used to validate the FTS spectra. Using the software IodineSpec5, which computes the iodine absorption lines at different temperatures, we concluded that the HET/HRS cell was most likely not at its nominal operating temperature of 70 degree Celsius during its FTS scan at NIST or at the TS12 measurement. We found that extremely high resolution echelle spectra (R>200,000) can validate and diagnose deficiencies in FTS spectra. We also recommend best practices for temperature control and nightly calibration of iodine cells.
120 - M. J. Hobson 2021
SPIRou is a near-infrared (nIR) spectropolarimeter at the CFHT, covering the YJHK nIR spectral bands ($980-2350,mathrm{nm}$). We describe the development and current status of the SPIRou wavelength calibration in order to obtain precise radial veloci ties (RVs) in the nIR. We make use of a UNe hollow-cathode lamp and a Fabry-Perot etalon to calibrate the pixel-wavelength correspondence for SPIRou. Different methods are developed for identifying the hollow-cathode lines, for calibrating the wavelength dependence of the Fabry-Perot cavity width, and for combining the two calibrators. The hollow-cathode spectra alone do not provide a sufficiently accurate wavelength solution to meet the design requirements of an internal error of $mathrm{<0.45,m,s^{-1}}$, for an overall RV precision of $mathrm{1,m,s^{-1}}$. However, the combination with the Fabry-Perot spectra allows for significant improvements, leading to an internal error of $mathrm{sim 0.15,m,s^{-1}}$. We examine the inter-night stability, intra-night stability, and impact on the stellar RVs of the wavelength solution.
We have measured the radial velocities of five 51 Peg-type stars and one star with constant velocity. Our measurements, on 20 AA centered at 3947 AA, were conventional using Th/Ar comparison spectra taken every 20 or 40 minutes between the stellar ex posures. Existing IRAF routines were used for the reduction. We find $sigma_{RV}$ $leq$ 20 m s$^{-1}$, provided 4 measurements (out of 72) with residuals $>5sigma_{RV}$ are neglected. The observations were made with the CFHT Gecko spectrograph, fiber-fed with the CAFE system (R$sim$110,000). $sigma_{RV}$ $leq$10 m s$^{-1}$ seems possible with additional care. This study was incidental to the main program and so not exhaustive but the small value of $sigma_{RV}$ implies that the fiber feed/image slicer system on Gecko + CAFE, essentially eliminates the long standing problem of guiding errors in radial velocity measurements. We are not suggesting this conventional approach for serious Doppler planet searches (especially with Gecko which has such a small multiplex gain), but the precision is valuable for observations made in spectral regions remote from telluric lines or captive-gas fiducials. Instrument builders might consider the advantages of the CAFE optics which incorporate agitation and invert the object and pupil for slit and grating illumination in future spectrograph designs.
We present spectrograph design details and initial radial velocity results from the PRL optical fiber-fed high-resolution cross-dispersed echelle spectrograph (PARAS), which has recently been commissioned at the Mt Abu 1.2 m telescope, in India. Data obtained as part of the post-commissioning tests with PARAS show velocity precision better than 2m/s over a period of several months on bright RV standard stars. For observations of sigma-Dra we report 1.7m/s precision for a period of seven months and 2.1m/s for HD 9407 over a period of 2 months. PARAS is capable of a single-shot spectral coverage of 3800A - 9500A at a resolution of about 67,000. The RV results were obtained between 3800A and 6900A using simultaneous wavelength calibration with a Thorium-Argon (ThAr) hollow cathode lamp. The spectrograph is maintained under stable conditions of temperature with a precision of 0.01 - 0.02C (rms) at 25.55C, and enclosed in a vacuum vessel at pressure of 0.1 +/-0.03 mbar. The blaze peak efficiency of the spectrograph between 5000A and 6500A, including the detector, is 30%; and about 25% with the fiber transmission. The total efficiency, including spectrograph, fiber transmission, focal ratio degradation (FRD), and telescope (with 81% reflectivity) is about 7% in the same wavelength region on a clear night with good seeing conditions.
We present here CAFE, the Calar Alto Fiber-fed Echelle spectrograph, a new instrument built at the Centro Astronomico Hispano Aleman (CAHA). CAFE is a single fiber, high-resolution ($Rsim$70000) spectrograph, covering the wavelength range between 365 0-9800AA. It was built on the basis of the common design for Echelle spectrographs. Its main aim is to measure radial velocities of stellar objects up to $Vsim$13-14 mag with a precision as good as a few tens of $m s^{-1}$. To achieve this goal the design was simplified at maximum, removing all possible movable components, the central wavelength is fixed, so the wavelentgth coverage; no filter wheel, one slit and so on, with a particular care taken in the thermal and mechanical stability. The instrument is fully operational and publically accessible at the 2.2m telescope of the Calar Alto Observatory. In this article we describe (i) the design, summarizing its manufacturing phase; (ii) characterize the main properties of the instrument; (iii) describe the reduction pipeline; and (iv) show the results from the first light and commissioning runs. The preliminar results indicate that the instrument fulfill the specifications and it can achieve the foreseen goals. In particular, they show that the instrument is more efficient than anticipated, reaching a $S/Nsim$20 for a stellar object as faint as $Vsim$14.5 mag in $sim$2700s integration time. The instrument is a wonderful machine for exoplanetary research (by studying large samples of possible systems cotaining massive planets), galactic dynamics (high precise radial velocities in moving groups or stellar associations) or astrochemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا