ﻻ يوجد ملخص باللغة العربية
We perform full two-dimensional (2D) numerical relaxations of isospinning soliton solutions in the baby Skyrme model in which the global $O(3)$ symmetry is broken by the 2D analogue of the pion mass term in the Skyrme model. In our calculations we explicitely allow the isospinning solitons to deform and to break the symmetries of the static configurations. We find that stable isospinning baby Skyrme solutions can be constructed numerically for all angular frequencies $omegale text{min}(mu,1)$, where $mu$ is the mass parameter of the model. Stable, rotationally-symmetric baby Skyrmion solutions for higher angular velocities are simply an artefact of the hedgehog approximation. Isospinning multisoliton solutions of topological charge $B$ turn out to be unstable to break up into their $B$ charge-1 constituents at some critical breakup frequency value. Furthermore, we find that for $mu$ sufficiently large the rotational symmetry of charge-2 baby Skyrmions becomes broken at a critical angular frequency $omega$.
We investigate how isospin affects the geometrical shape and energy of classical soliton solutions of topological charges $B=1-4,8$ in the Skyrme model. The novel approach in our work is that we study classically isospinning Skyrmions beyond the rigi
The problem of constructing internally rotating solitons of fixed angular frequency $omega$ in the Faddeev-Skyrme model is reformulated as a variational problem for an energy-like functional, called pseudoenergy, which depends parametrically on $omeg
In the Skyrme model atomic nuclei are modelled as quantized soliton solutions in a nonlinear field theory of pions. The mass number is given by the conserved topological charge $B$ of the solitons. Conventionally, Skyrmions are semiclassically quanti
We perform full three-dimensional numerical relaxations of isospinning Hopf solitons with Hopf charge up to 8 in the Skyrme-Faddeev model with mass terms included. We explicitly allow the soliton solution to deform and to break the symmetries of the
We discuss how internal rotation with fixed angular frequency can affect the solitons in the baby Skyrme model in which the global O(3) symmetry is broken to the SO(2). Two particular choices of the potential term are considered, the old potential an